Обратную матрицу найдем по формуле:
,
где |A| - определитель матрицы, а - транспонированная матрица алгебраических дополнений
Т.к. определитель матрицы не равен 0, то обратная матрица существует.
Находим матрицу миноров. Для каждого элемента матрицы соответствующий ему минор вычисляется по определителю матрицы 2х2, которая получается вычеркиванием соответствующей строки и столбца для этого элемента:
Получили следующую матрицу миноров:
Из матрицы миноров получим матрицу алгебраических дополнений заменой знака на противоположный у элементов матрицы миноров, у которых сумма номеров строк и столбца нечетна:
Следующим шагом получаем транспонированную матрицу алгебраических дополнений:
Обратная матрица:
Проверим, что произведение исходной и обратной матрицы равно единичной:
Строим угол C, равный данному углу Е. Для этого
строим луч СН;
проводим дуги с произвольным, но одинаковым радиусом с центрами в точках Е и С.;
D и F - точки пересечения дуги со сторонами угла Е, К - точка пересечения дуги с лучом СН;
проводим дугу с центром в точке F, радиусом FD, затем с тем же радиусом с центром в точке К. Точка пересечения дуг - L.
Проводим луч CL. Угол LCK равен данному углу Е.
На луче СН откладываем отрезок СА = b.
На луче CL откладываем отрезок СВ = а. Соединяем точки А и В.
Треугольник АВС - искомый.