10100
Объяснение:
Сумма всех четных чисел от 2 до 200 включительно представляет собой сумму первых 100 членов арифметический прогрессии an с первым членом а1, равным 2 и разностью d, также равной 2.
Найдем сумму этих чисел, используя формулу суммы членов арифметической прогрессии с первого по n-й включительно Sn = (2 * a1 + d * (n - 1)) * n / 2.
Подставляя в эту формулу значения a1 = 2, d = 2, n = 100, получаем:
S100 = (2 * 2 + 2 * (100 - 1)) * 100 / 2 = (2 * 2 + 2 * 99) * 50 = 2 * 101 * 50 = 202 * 50 = 10100.
ответ: искомая сумма равна 10100.
Сумма всех четных чисел от 2 до 200 включительно представляет собой сумму первых 100 членов арифметический прогрессии an с первым членом а1, равным 2 и разностью d, также равной 2.
Найдем сумму этих чисел, используя формулу суммы членов арифметической прогрессии с первого по n-й включительно Sn = (2 * a1 + d * (n - 1)) * n / 2.
Подставляя в эту формулу значения a1 = 2, d = 2, n = 100, получаем:
S100 = (2 * 2 + 2 * (100 - 1)) * 100 / 2 = (2 * 2 + 2 * 99) * 50 = 2 * 101 * 50 = 202 * 50 = 10100.
ответ: искомая сумма равна 10100
y=х^1/3, y' = (1/3)*x^(-2/3)
y=(3х-4)^3/5, y' = (9/5)*(3x-4)^(-2/5)
у=(2х-1)^3/4, y' = (3/2)*(2x-1)^(-1/4)