Решение
Пусть x км/ч - скорость мотоциклиста,
(60/x) ч время, затраченное от села до озера
(х -10) км/ч - скорость на обратном пути,
60/(x - 10) ч время, затраченное на обратный путь
60/x меньше 60/(x - 10) на 0,3
Составим и решим уравнение:
60/(x-10) - 60/x = 0,3
600x - 600x +6 000 = 3x² - 30x
3x² - 30x - 6000 = 0 делим на 3
x² -10x – 2000 = 0
D = 100 + 4*1*2000 = 8100
x₁ = (10 - 90)/2 = - 40 < 0 не удовлетворяет условию задачи
x₂ = 10 + 90)/2 = 50
60/(50-10) = 60/40 = 1,5 ч - время, затраченное на обратный путь
ответ: 1,5 ч
а - наименьший, b - средний по величине, c - наибольший.
Находим сумму наименьшего с наибольшим: а+с
Так как сумма углов треугольника равна 180°, то b=180°-(a+c)
Анализируем предложенные ответы:
А) если (а+с)=61°, то b=180°-61°=119° - тупой угол, следовательно наибольший угол - противоречие условию "b - средний по величине угол"
Б) если (а+с)=90°, то b=180°-90°=90° - прямой угол, следовательно наибольший угол - также противоречие условию "b - средний по величине угол"
В) если (а+с)=91°, то b=180°-91°=89° - в качестве примера отлично подходят углы а=1°, с=90° - полное соответствие условию: а - наименьший, b - средний, с - наибольший угол.
Дальнейшая проверка ответов не имеет смысла, так как необходимо было найти самый маленький результат.
ответ: 91°