Сначала надо найти уравнение прямой, проходящей через точки А и В: -2x + 8 = -6y + 12. Уравнение можно представить в двух вариантах: -1) в виде Ax + By +C = 0: -2x + 6y - 4 = 0 x - 3y + 2 = 0. - 2) в виде уравнения с коэффициентом у = ах + в у = (1/3)х + (2/3). Прямая, проходящая через точку M₁(x₁; y₁) и перпендикулярная прямой y=ax+b, представляется уравнением : y – y₁ = (-1/a)*(x-x₁) .(1) Альтернативная формула Прямая, проходящая через точку M1(x1; y1) и перпендикулярная прямой Ax+By+C=0, представляется уравнением: A(y-y₁)-B(x-x₁)=0. (2). Если перпендикуляр должен проходить через середину отрезка АВ (это точка С(1;1)), его уравнение: Найдем уравнение NK, проходящее через точку K(1;1), перпендикулярно прямой y = 1/3x + 2/3 Прямая, проходящая через точку K0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями: Уравнение прямой : y = -3x + 4 или y +3x -4 = 0 Данное уравнение можно найти и другим Для этого найдем угловой коэффициент k1 прямой . Уравнение AB: , т.е. k1 = 1/3 Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k1*k = -1. Подставляя вместо k1 угловой коэффициент данной прямой, получим : 1/3k = -1, откуда k = -3 Так как искомое уравнение проходит через точку NK и имеет k = -3,то будем искать его уравнение в виде: y-y0 = k(x-x0). Подставляя x0 = 1, k = -3, y0 = 1 получим: y-1 = -3(x-1) или y = -3x + 4 или y + 3x - 4 = 0
Допустим, что скорость первого велосипедиста = х км/ч,
Поскольку по условию задания скорость одного на 3 км/ч больше скорости другого, значит скорость другого велосипедиста = х-3 км/ч
Время в пути велосипедистов = расстояние между селами / скорость велосипедистов, значит
36/х - время в пути первого велосипедиста
36/ (х-3) - время в пути второго велосипедиста
По условию задания расстояние между селами один велосипедист преодолевает на 1 час быстрее другого.Поэтому выходит, что первый велосипедист тратит на 1 час меньше нежели второй на преодоление расстояния между селами А значит 36/х +1 = 36/ (х-3)
36/х - 36/ (х-3)=-1
(36*(х-3))/(х*(х-3)) - (36*х)/(х*(х-3))=-1
(36х-108)/(х*(х-3)) - (36х)/(х*(х-3))=-1
(36х-108 - 36х)/(х*(х-3))=-1
-108=-(х*(х-3))
108=х²-3х
х²-3х-108=0
Теперь решим квадратное уравнение
Выпишем коэффициенты квадратного уравнения: a = 1,
-2x + 8 = -6y + 12.
Уравнение можно представить в двух вариантах:
-1) в виде Ax + By +C = 0:
-2x + 6y - 4 = 0
x - 3y + 2 = 0.
- 2) в виде уравнения с коэффициентом у = ах + в
у = (1/3)х + (2/3).
Прямая, проходящая через точку M₁(x₁; y₁) и перпендикулярная прямой y=ax+b, представляется уравнением :
y – y₁ = (-1/a)*(x-x₁) .(1)
Альтернативная формула
Прямая, проходящая через точку M1(x1; y1) и перпендикулярная прямой Ax+By+C=0, представляется уравнением:
A(y-y₁)-B(x-x₁)=0. (2).
Если перпендикуляр должен проходить через середину отрезка АВ (это точка С(1;1)), его уравнение:
Найдем уравнение NK, проходящее через точку K(1;1), перпендикулярно прямой y = 1/3x + 2/3
Прямая, проходящая через точку K0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:
Уравнение прямой :
y = -3x + 4 или y +3x -4 = 0
Данное уравнение можно найти и другим Для этого найдем угловой коэффициент k1 прямой .
Уравнение AB: , т.е. k1 = 1/3
Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k1*k = -1.
Подставляя вместо k1 угловой коэффициент данной прямой, получим :
1/3k = -1, откуда k = -3
Так как искомое уравнение проходит через точку NK и имеет k = -3,то будем искать его уравнение в виде: y-y0 = k(x-x0).
Подставляя x0 = 1, k = -3, y0 = 1 получим:
y-1 = -3(x-1)
или
y = -3x + 4 или y + 3x - 4 = 0