Вертикальное сечение конуса с вписанным в него шаром, проходящее через центр основания будет выглядеть как треугольник с вписанной в него окружностью. Радиус окружности будет равен радиусу шара. Найти радиус окружности можно воспользовавшись формулой r = sqrt ( (p-a)*(p-b)*(p-c)/p ), где p - полупериметр треугольника, a, b и c - длины сторон треугольника. Две из трех сторон треугольника равны образующей конуса (15 см), а третья равна диаметру основания конуса (18 см). Полупериметр будет равен 24 см. Подставляем эти цифры в формулу радиуса вписанной окружности и получаем r = 4,5 см. Остается воспользоваться формулой объема шара - V = 4/3 * Pi * r^3. Объем получается равным 381.7 куб.см.
Найдем x0. x0=-b/(2a)=-(-6)/(2*3)=1
Найдем значение y при x=1.
y=3*1^2-6*1+1=3-6+1=-2.
Т.к. y=3x^2-6x+1 - это парабола, ветви направлены вверх, то область значений: [-2;+бесконечности)
Найдем производную функции. y'=6x-6. Приравним производную функции к нулю.
6x-6=0. Найдем точки экстремума. 6x=6, x=1. Т.к. y=3x^2-6x+1 - это парабола, ветви направлены вверх, то x=1- это точка минимума. Найдем значение функции наданной точке. y=3*1^2-6*1+1=3-6+1=-2. Т.к. y=3x^2-6x+1 - это парабола, ветви направлены вверх, то область значений: [-2;+бесконечности)
P.S. Если вы ещё не производную, воспользуйтесь первым