По теореме косинусов
64*3 = r^2 + r^2 - 2* r^2 * cos 120
192 =2 * r^2 + 2 * r^2* cos 60
192 =2 * r^2 + 2 * r^2* 1/2
192 = 3* r^2
r^2 = 64 см
r = 8 см
Из треугольника АОС, т к. угол осевого сечения при вершине С равен 90 градусов
угол САО = угол ОСА = 45 гр. , следовательно СО =ОА = 8 см
Из треугольника ОВК:
ОК = (64 — 16*3)^(1/2) = 4
Из треугольника КОС
КС = (СО^2 + OR^2)^(1/2) = (64 +16)^(1/2) = 4*(5)^(1/2)
Итак, искомая площадь
S = 1/2*AB*CK = 1/2 * 8*(3)^(1/2)*4*(5)^(1/2) = 16*(15)^(1/2) cм^2
ответ: S = 16*(15)^(1/2) cм^2
Пусть х перевел в третий день
0,35 х перевел во второй
х/1,2 перевел в первый день
х+0,35 х+х/1,2=130
1,35х+10х/12=130
1620х+1000х=130*12*100
2620х=156000
Мне кажется условие задачи не точное.