Длину дистанции обозначим S м. Скорость Маши v(M) = S/35 м/мин Скорость Коли v(K) = S/28 м/мин Их скорости относятся друг к другу v(K):v(M) = 35:28 = 5:4 Если бы они начали одновременно, то Коля пробежал бы 5/9 пути, а Маша 4/9 пути, т.е. часть 0,8 от пути Коли. А на самом деле Маша пробежала 0,75 от пути Коли. Коля пробежал x м, а Маша на 1/4 меньше Коли, т.е. 0,75x м. А вместе они пробежали S = x + 0,75x = 1,75x = 7x/4 x = 4/7*S - путь Коли; 0,75x = 3/7*S - путь Маши. 3/7 = 27/63 < 4/9 = 28/63, значит Маша пробежала меньше, чем могла бы, если бы они начали одновременно. Значит, Коля начал раньше. Пусть Коля начал раньше на а мин. Значит, когда Маша начала, он уже пробежал а/35 часть пути. Осталось (35-a)/35 часть. Коля пробежал 5/9 от этой части. Это будет (35-a)/35*5/9 = 5(35-a)/315 - пробежал Коля от старта Маши до встречи. А всё вместе он пробежал 4/7 пути. a/35 + 5(35-a)/315 = 4/7 Умножаем всё на 315 = 35*9 = 45*7 9a + 175 - 5a = 4*45 = 180 4a = 5 a = 5/4 Ближе всего это к 1 мин. Видимо, правильный ответ: Г) Коля на 1 мин раньше.
S(3)=(2a1+2d)*3/2=15; |*2 (2a1+2d)*3=30; |:3 2a1+2d=10; |:2 (1) a1+d=5; - первое уравнение системы Составим второе уравнение системы: a2=a1+d; a3=a1+2d; a1²+(a1+d)²+(a1+2d)²=93; a1²+(a1²+2a1*d+d²)+(a1²+4a1*d+4d²)-93=0; (2) 3a1²+5d²+6a1*d-93=0; - второе уравнение системы Из (1) выражаем а1 и подставляем в (2): (1) а1=5-d; (2) 3(5-d)²+5d²+6(5-d)*d-93=0; 3(25-10d+d²)+5d²+30d-6d²-93=0; 75-30d+3d²+5d²+30d-6d²-93=0; 2d²-18=0; 2d²=18; d²=9; d=-3 или d=3. Если d=-3, то a1=5-d=5-(-3)=5+3=8; Если d=3, то a1=5-d=5-3=2. ответ: a1=8 и d=-3 или a1=2 и d=3.
ab+ac-abc-ba+abc+cb-ac=cb