Нужно рассмотреть два случая: 1. когда отрезки АВ и АС откладываются от точки А в одном направлении (точка С лежит на отрезке АВ). 2. когда отрезки АВ и АС откладываются от точки А в противоположных направлениях (точка А лежит между В и С). Для любого из этих случаев нам нужна середина отрезков: АВ/2 = 7,5см АС/2 = 4,5см Теперь исходя из вышеописанных случаев чтобы найти расстояние между серединами!! отрезков: 1 случай: отрезки отложены в одном направлении от А, поэтому для нахождения расстояния нам нужно: 7,5-4,5=3см. 2 случай: отрезки в разных направлениях и расстояние между серединами будет: 7,5+4,5=12см.
Раскроем выражение в уравнении (x - 3)*(x - 2) Получаем квадратное уравнение 6 + x² - 5*x = 0 Это уравнение вида a*x^2 + b*x + c. Квадратное уравнение можно решить с дискриминанта.Корни квадратного уравнения: ___ - b ± \/ D x1, x2 = , 2*a где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 1 b = -5 c = 6, тоD = b^2 - 4 * a * c = (-5)^2 - 4 * (1) * (6) = 1 Т.к. D > 0, то уравнение имеет два корня. x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) x1 = 3 x2 = 2
-4*x = 0 Разделим обе части ур-ния на -4 x = 0 / (-4) Получим ответ: x = 0
-9*x+14 = 0 Переносим свободные слагаемые (без x)из левой части в правую, получим: -9*x = -14 Разделим обе части ур-ния на -9 x = -14 / (-9) Получим ответ: x = 14/9
а)
ОДЗ:у-любое число
б)
ОДЗ:у-любое число,кроме у≠9
у-9=0
у=9
в)
ОДЗ:у-любое число, кроме у≠3,у≠ -3
у²-9=0
(у-3)(у+3)=0
у-3=0 или у+3=0
у=3 у= -3
г)
ОДЗ:у-любое число
у²+3=0
у²≠ -3
ответ:уравнение не существует, квадрат числа не может быть отрицательным
д)
ОДЗ:у-любое число,кроме у≠6,у≠ -6
у-6=0 или у+6=0
у=6 у= -6
е)
ОДЗ-х-любое число,кроме х≠0,х≠ -7
х=0 или х+7=0
х= -7
II варианта)
ОДЗ:х-любое число
б)
ОДЗ:а-любое число,кроме а≠4
4-а=0
-а= -4
а=4
в)
ОДЗ:а-любое число, кроме а≠4,а≠ -4
а²-16=0
(а-4)(а+4)=0
а-4=0 или а+4=0
а=4 а= -4
г)
ОДЗ:х-любое число
х²+4=0
х²≠ -4
ответ:уравнение не существует, квадрат числа не может быть отрицательным
д)
ОДЗ:х-любое число,кроме х≠4,х≠ -4
х-4=0 или х+4=0
х=4 х= -4
е)
ОДЗ:а-любое число,кроме а≠0,а≠1
а=0 или а-1=0
а=1
ОДЗ-область допустимых значений