№1 (а)
ответ: -\frac{4}{3}" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=x%20%3E%20-%5Cfrac%7B4%7D%7B3%7D" title="x > -\frac{4}{3}">
№1 (б)
№2 (а)
-4} \atop {x\leq -2.5}} \right." class="latex-formula" id="TexFormula6" src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%3E-4%7D%20%5Catop%20%7Bx%5Cleq%20-2.5%7D%7D%20%5Cright." title="\left \{ {{x>-4} \atop {x\leq -2.5}} \right.">
№2(б)
\frac{36}{5}" class="latex-formula" id="TexFormula10" src="https://tex.z-dn.net/?f=x%20%3E%20%5Cfrac%7B36%7D%7B5%7D" title="x > \frac{36}{5}">
ответ: \frac{36}{5}" class="latex-formula" id="TexFormula12" src="https://tex.z-dn.net/?f=x%20%3E%20%5Cfrac%7B36%7D%7B5%7D" title="x > \frac{36}{5}">
Найдём несколько следующих чисел данной последовательности, чтобы найти закономерность.
2) 7²=49; 4+9=13; 13+1=14
На втором месте стоит число 14
3) 14²=196; 1+9+6=16; 16+1=17
На третьем месте стоит число 17
4) 17²=289; 2+8+9=19; 19+1=20
На четвёртом месте стоит число 20
5) 20²=400; 4+0+0=4; 4+1=5
На пятом месте стоит число 5
6) 5²=25; 2+5=7; 7+1=8
На шестом месте стоит число 8
7) 8²=64; 6+4=10; 10+1=11
На седьмом месте стоит число 11
8) 11²=121; 1+2+1=4; 4+1=5
На восьмом месте стоит число 5
Получается, что теперь члены последовательности будут повторяться:
5; 8; 11; 5; 8; 11...
Получается последовательность:
7; 14; 17; 20; 5; 8; 11; 5; 8; 11...
Подсчитаем, какое число будет стоять на 2017 месте.
Вычтем 4 первых члена, которые не повторяются:
2017 - 4 = 2013
Число 2013 делится без остатка на 3
2013 : 3 = 671
Следовательно, после четырёх первых членов 7; 14; 17; 20 будет 671 раз повторяться тройка чисел 5; 8; 11. Значит, последним будет число 11.