М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
pzuzuk
pzuzuk
03.04.2020 16:06 •  Алгебра

Найти производную функции (1+sin(2x))2 по переменной x т.е. вычислить ((1+sin(2x))2)′

👇
Ответ:
1234567891248
1234567891248
03.04.2020

я так понимаю, что выражение вскобках-в квадрате . производная сложной функции

y'=((1+sin(2x))^2)′*(1+sin(2x))'*(sin(2x))'*(2x)'=2(1+sin(2x))*cos(2x)*2=4cos(2x)(1+sin(2x))

4,6(70 оценок)
Ответ:

2(1+sin2x)=2*cos2x*2=4cos2x

4,5(82 оценок)
Открыть все ответы
Ответ:
Motya232
Motya232
03.04.2020

1.D(F)=[0;+∞)

1.Е(F)=[0;+∞)

3. Нули функции x-√x=0;  √х*(√x-1)=0; x=0 ;x=1.

4. Промежутки знакопостоянства при х ∈(0;1)  F(x)<0; при х ∈(1;+∞)  F(x)>0

5. Функция непериодическая.

6. Функция не является ни четной, ни нечетной. т.к. область определения не симметрична относительно начала отсчета.

7. Асимтптоты. т.к. предел функции при х стремящемся к ±∞ равен ±∞, то горизонтальные асимптоты справа и слева отсутствуют. Вертикальных асимптот тоже нет. Функция в области определения непрерывна. Наклонные асимптоты ищем в виде у=кх+b, где к-предел отношения F(х)/x при х стремящемся к ∞, этот предел равен 1, а b = пределу (F(x)-kx) при х стремящемся к ∞, и он равен -∞. Поэтому наклонных асимптот нет.

8. Промежутки монотонности. Первая производная равна 1-1/(2√х)=(2√х-1)/(2√х), она равна нулю при х=1/4, и производная отрицательна при х∈(0;1/4) здесь функция убывает. и положительна при х∈(1/4;+∞) здесь функция возрастает.

9. Экстремумы. При переходе через точку х=1/4 производная меняет знак с минуса на плюс. х=1/4- точка минимума. Минимум равен 1/4-√1/4=-1/4

10. Вторая производная равна 1/(4х³/²) в области определения положительна, поэтому график вогнут. Точек перегиба нет.

График функции см. ниже.


х «Исследование функции методами дифференциального исчисления» Произвести полное исследование функци
4,4(75 оценок)
Ответ:
TheCool111
TheCool111
03.04.2020

2014, 2015

2017, 2018,2019, 2020.

Рассмотрим произвольное число A в котором n цифр. Очевидно, что

Поскольку в числе 10^k ровно k+1 цифра, можно утверждать что:

В числе A^2 количество цифр от 2n-1 до 2n включительно

В числе A^3 количество цифр от 3n-2 до 3n включительно

Суммарное число цифр, таким образом, лежит в пределах

от 5n-3 до 5n включительно. То есть, остатки от деления суммарного числа цифр на 5 могут быть только 2,3,4 и 0

Подходят: 2014, 2015

2017, 2018,2019, 2020.

Объяснение:

Рассмотрим произвольное число A в котором n цифр. Очевидно, что

Поскольку в числе 10^k ровно k+1 цифра, можно утверждать что:

В числе A^2 количество цифр от 2n-1 до 2n включительно

В числе A^3 количество цифр от 3n-2 до 3n включительно

Суммарное число цифр, таким образом, лежит в пределах

от 5n-3 до 5n включительно. То есть, остатки от деления суммарного числа цифр на 5 могут быть только 2,3,4 и 0

4,5(11 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ