Объяснение:
а) х² - 8х = 0, х·(х -8) = 0 ⇒ х =0 или х - 8 = 0; х =0 или х = 8.
б. 6х² = 12; х² = 12÷6, х² = 2, х = ±√2
в) 3x² – 48 = 0, 3x²= 48, x² = 48÷3,x² = 16, х = ± 4
г) 6x² – 5x + 1 = 0;D = b²- 4ac = 25 - 4·6 = 24; x = -b ±√D/2a
x1 = 5+√1/12 = 5+1/12 = 6/12 = 1/2, x2 = 5-1/12 = 4/12 = 1/3
д) x² –16x + 71 = 0.D = b²- 4ac =256 - 4·1·71= 256 -284 =-28 - меньше 0 ⇒∅
е) (4x – 3)2 + (3х – 1)(3х+1) = 9
8х -6 +(9х²-3х+3х-1)=9; 8х -6+(9х²-1) =9; 8х -6 +9х²-1-9 = 0; 9х²+8х-16 =0
D = b²- 4ac = 64+4·9·16= 64+576 =640
х1 = -8+√640/18/= -8+8√10/18; х2 = -8-8√10/18
2*.При яких значеннях а рівняння аx² + аХ + 36 = 0 має один корінь?
D = 0⇒ а²-4·а·36 = 0, а²-144 = 0, а²=144, а = ±12
1 решение смотри на фотке
2 (х + 1)(х + 2)(х + 3)(х + 4) = 24.
Поменяем скобки местами:
(х + 1)(х + 4)(х + 2)(х + 3) = 24.
Раскроем скобки попарно:
(х² + 1х + 4x + 4)(х² + 2х + 3x + 6) = 24.
(х² + 5x + 4)(х² + 5x + 6) = 24.
Произведем замену, пусть х² + 5x = а.
(а + 4)(а + 6) = 24.
а² + 4а + 6а + 24 - 24 = 0.
а² + 10а = 0.
а(а + 10) = 0.
а = 0 или а = -10.
Вернемся к замене х² + 5x = а.
а = 0; х² + 5x = 0; х(х + 5) = 0; отсюда х = 0 или х = -5.
а = -10; х² + 5x = -10; х² + 5x + 10 = 0; D = 25 - 40 = -15 (D < 0, корней нет).
ответ: корни уравнения равны -5 и 0.