М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DedSToporom
DedSToporom
27.01.2022 07:06 •  Алгебра

1. Построить функцию у = 1,5х. Используя график, определить чему равно значение X, соответствующее значению У, равному 0; 3; -3; -6.

2. Построить функцию у=kx, если известно, что ее график проходит через Tч.A (2; 5). Записать уравнение данной прямой.

3. Построить функцию у = 2х – 4.
Вычислить координаты точек пересечения графика функции с осями координат, определить при каких X, значения У положительны, отрицательны.

4. В одной системе координат построить графики функций у= 0,5х +1 и у- - X+4.
Определить координаты точки их пересечения.​

👇
Открыть все ответы
Ответ:
shapuk
shapuk
27.01.2022

    Философия Древней Греции, в своей основе, представляла учение о рациональном осмыслении существования мира. В те времена, никто не сомневался в божественном происхождении всего сущего, но учения о том, как, по какому принципу, создана окружающая действительность, оставили заметный след в науке и культуре Западного мира, ставших основой принципов и методов научного познания вселенной.

    Пифагор Самосский - загадочная, но достоверно существовавшая, личность. Являясь религиозным философом - идеалистом, он создал тайное учение, записи о котором вести запрещалось, поэтому до нас не дошло ни одного трактата самого Пифагора. О достижениях Пифагора и Пифагорейской школы, известно из свидетельств античных авторов, появившихся после 3 века до н. э.    

    Известно, что Пифагор родился, приблизительно, в 750 г. до н. э . в Самосе (или Сидоне). В 18 лет он покинул Грецию и, прожив в Египте 22 года, постиг тайные учения египетских мудрецов и магов, потом, в плену в Вавилоне, в течение 12-и лет, продолжал общение с членами магических тайных обществ.

    В 56 лет Пифагор вернулся на родину уже состоявшимся философом, - кстати, Пифагор, первым из греческих мудрецов, назвал себя философом - любителем мудрости, - и создал свою школу тайного учения.

    Девизом Пифагорейской школы можно назвать изречение "Цифры правят миром". Учение Пифагора делится на две части : научный подход к познанию мира и религиозно - мистические постулаты образа жизни. Второй частью предписывались нравственное и физическое очищение, как средство достижения идеального существования, в ней содержались сведения о круговороте человеческой жизни, морально - этические общечеловеческие  законы.

   Первая часть, тайное учение, была уделом посвященных. В ней содержались принципы построения вселенной и всего сущего. Пифагор считал, что миром правят числа, и, что познание мира - это познание чисел, им управляющих.

    Пифагорейская школа выдвинула гипотезу о количественной закономерности развития мира мира, что стало основой для развития точных наук.

    В Древней Греции, синонимом красоты была гармония. А философия включала в себя не только мудрые размышления о сущем, но и науку, искусства и спорт. Пифагорейцы искали математические основы гармонии, и открыли числовые отношения (пропорции) во всех сферах человеческой деятельности. Платон писал: "Математика выявляет порядок, симметрию и определённость, а это – важнейшие виды прекрасного."

    Благодаря поиску гармонии и открытию пропорций,  Пифагором была открыта математическая закономерность  музыкального звучания - Теория музыки. Это были бесценные опыты доказательства связи физического явления (звук) с математическими законами.

    Пифагор использовал три средние величины (а, может, и был их первооткрывателем): среднее арифметическое, геометрическое и гармоническое.

Он, первым, доказал теорему " В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов", носящую его  имя.

    Пифагор занимался изучением четных и нечетных чисел, применяя, впервые, дедуктивный метод исследования. (от частного - к общему). Одним из первых объектов изучения, в современной Теории чисел, была теория четных и нечетных чисел.

   Также, Пифагор доказал теорему о сумме внутренних углов треугольника, изобрел (по некоторым источникам), таблицу умножения в современном виде, нашел геометрический решения квадратных уравнений, разработал правила решения задач.

    Поскольку, в Пифагорейской школе, записи были под запретом, и знания передавались от учителя к ученикам устно, то, среди исследователей, есть разногласия по поводу авторства Пифагора в тех или иных исследованиях, проводившихся в рамках его школы. Приписываемые Пифагору открытия, вполне могут быть открытиями его учеников. Кроме того, существует мнение, что все, что было открыто, доказано и разработано школой, являлось интеллектуальной собственностью Пифагора. Несмотря на подобные разногласия. несомненно то, что школа была основана на научных и философских изысканиях Пифагора, в ее основу легли его теории существования вселенной и, все открытия школы имели заданное направление, поэтому, без сомнения, их можно считать открытиями самого великого философа.

   

   

   

   

   

   

4,5(19 оценок)
Ответ:
kolyanovak7
kolyanovak7
27.01.2022

В решении.

Объяснение:

Решить систему неравенств:

1) -4х <= -12

 x + 2 > 6

Решить первое неравенство:

-4х <= -12

4x >= 12    знак меняется при делении на минус

х >= 3

Решение неравенства х∈[3; +∞).

Неравенство нестрогое, значение х=3 входит в интервал решений неравенства, скобка квадратная, а знаки бесконечности всегда с круглой скобкой.

Решить второе неравенство:

x + 2 > 6

х > 6 - 2

x > 4

Решение неравенства х∈(4; +∞).

Неравенство строгое, значение х=4 не входит в интервал решений неравенства, скобка круглая, а знаки бесконечности всегда с круглой скобкой.

Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.  

Чертим числовую ось, отмечаем значения 3; 4; +∞.

х∈[3; +∞) - штриховка вправо от 3 до + бесконечности.

х∈(4; +∞) - штриховка вправо от 4 до + бесконечности.

Пересечение решений (двойная штриховка) от 4 до   + бесконечности.

Решение системы неравенств: х∈(4; +∞).

2) 8 - х > 5

  x - 7 <= 2

Решить первое неравенство:

8 - х > 5

-х > 5 - 8

-x > -3

x < 3     знак меняется при делении на минус

Решение неравенства х∈(-∞; 3).

Неравенство строгое, скобки круглые.

Решить второе неравенство:

x - 7 <= 2

х <= 2 + 7

х <= 9

Решение неравенства х∈(-∞; 9].

Неравенство нестрогое, скобка квадратная.

Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.  

Чертим числовую ось, отмечаем значения -∞; 3; 9.

х∈(-∞; 3) - штриховка вправо от - бесконечности до 3.

х∈(-∞; 9] - штриховка вправо от - бесконечности до 9.

Пересечение решений (двойная штриховка) от - бесконечности до 3.

Решение системы неравенств: х∈(-∞; 3).

3) 3х - 3 < 5x

   7x - 10 < 5x

Решить первое неравенство:

3х - 3 < 5x

3х - 5х < 3

-2x < 3

2x > -3     знак меняется при делении на минус

x > -1,5

Решение неравенства х∈(-1,5; +∞).

Неравенство строгое, скобки круглые.

Решить второе неравенство:

7x - 10 < 5x

7х - 5х < 10

2x < 10

x < 5

Решение неравенства х∈(-∞; 5).

Неравенство строгое, скобки круглые.

Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.  

Чертим числовую ось, отмечаем значения -∞; -1,5; 5.

х∈(-1,5; +∞) - штриховка вправо от -1,5 до + бесконечности.

х∈(-∞; 5) - штриховка вправо от - бесконечности до 5.

Пересечение решений (двойная штриховка) от - 1,5 до 5.

Решение системы неравенств: х∈(-1,5; 5).

4) 2 - 3х < 4x - 12

 7 + 3x >= 2x + 10

Решить первое неравенство:

2 - 3х < 4x - 12

-3x - 4x < -12 - 2

-7x < -14

7x > 14     знак меняется при делении на минус

x > 2

Решение неравенства х∈(2; +∞).

Неравенство строгое, скобки круглые.

Решить второе неравенство:

7 + 3x >= 2x + 10

3х - 2х >= 10 - 7

x >= 3

Решение неравенства х∈[3; +∞).

Неравенство нестрогое, скобка квадратная.

Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.  

Чертим числовую ось, отмечаем значения 2; 3; +∞.

х∈(2; +∞) - штриховка вправо от 2 до + бесконечности.

х∈[3; +∞) - штриховка вправо от 3 до + бесконечности.

Пересечение решений (двойная штриховка) от 3 до + бесконечности.

Решение системы неравенств: х∈[3; +∞).

4,4(90 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ