Так как все три встречи произошли когда парни бежали друг к другу то их скорости складываются. Следовательно если принять расстояние между деревьями за х то скорость одного будет V1= 300/t ; А скорость второго V2=(х-300)/t так как 3-я встреча произошла на расстоянии 400м от сосны значит Бегун бежавший изначально от сосны успел пробежать (х-300)+х+400=2х+100; А второй бегун соответственно 2х-100;учитывая скорости бегунов найдем t3=(2x+100)/(300/t)=(2x+100)*t/300 В тоже время для второго бегуна t3=(2x-100)/((x-300)/t)=(2x-100)*t/(x-300)приравняв получим (2х+100)/300=(2х-100)/(х-300) (2x+100)(x-300)=(2x-100)*300 2x^2+100x-600x-30000=600x-30000; 2x^2-1100x=0 x(2x-1100)=0 x0 или 2х-1100=0 х=550метров!
X^2 - 2(a-1)x + (2a+1) = 0 1) Если оно имеет действительные корни, то D >= 0 D/4 = (b/2)^2 - ac = (a-1)^2 - 1(2a+1) = a^2 - 2a + 1 - 2a - 1 = a^2 - 4a >= 0 a(a - 4) >= 0 a <= 0 U a >= 4
Знаки корней. 2) Если a <= 0, то a - 1 < 0 x1 = (-b/2 - √(D/4)) / a = (a - 1 - √(a^2 - 4a)) / 1 = a - 1 - √(a^2 - 4a) < 0 x2 = (-b/2 + √(D/4)) / a = (a - 1 + √(a^2 - 4a)) / 1 = a - 1 + √(a^2 - 4a) x2 может быть и больше и меньше 0. a) a - 1 + √(a^2 - 4a) < 0 √(a^2 - 4a) < 1 - a a^2 - 4a < a^2 - 2a + 1 2a > -1; -1/2 < a <= 0 b) a - 1 + √(a^2 - 4a) > 0 Аналогично получаем a < -1/2
3) Если a = -1/2, то c = 2a + 1 = 0, тогда x^2 - 2(-1/2 + 1)x + 0 = 0 x^2 - 2(1/2)x = 0 x^2 - x = 0 x1 = 0, x2 = 1 > 0
4) Если a >= 4, то a - 1 > 0 x1 = (-b/2 - √(D/4)) / a = (a - 1 - √(a^2 - 4a)) / 1 = a - 1 - √(a^2 - 4a) x1 может быть и больше и меньше 0. x2 = (-b/2 + √(D/4)) / a = (a - 1 + √(a^2 - 4a)) / 1 = a - 1 + √(a^2 - 4a) > 0 a) a - 1 - √(a^2 - 4a) < 0 √(a^2 - 4a) > a - 1 a^2 - 4a > a^2 - 2a + 1 2a < -1 a < -1/2 - не подходит, потому что a >= 4 b) a - 1 - √(a^2 - 4a) >= 0 √(a^2 - 4a) <= a - 1 a^2 - 4a <= a^2 - 2a + 1 2a >= -1 a >= -1/2 - подходит для любых a >= 4 Значит, при любом a >= 4 оба корня положительны. ответ: При -1/2 < a <= 0 будет x1 < 0, x2 < 0 При a = -1/2 будет x1 = 0, x2 > 0 При a < -1/2 будет x1 < 0, x2 > 0 При a >= 4 будет x1 > 0, x2 > 0 При 0 < a < 4 действительных корней нет.
ответ: а) 0,8=корень из 0,64, х=0,8*0,8=0,64.
2,5=корень из х или х=2,5*2,5=6,25.
Ь) у=корень из 2
У=корень из 6.
Объяснение: