М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
seva0311
seva0311
11.02.2023 00:09 •  Алгебра

1. Укажите все верные утверждения: а) Через любые три точки проходит ровно одна прямая.

б) Если отрезок не пересекает прямую, то точки и лежат от нее в одной полуплоскости.

в) Теорема — это утверждение, с которым все соглашаются без доказательства.

2. На отрезке отмечена точка . Известно, что = 28 см, а меньше в 3 раза.
а) Найдите длины отрезков и .
б) Найдите расстояние от точки до середины отрезка .

3. На прямой отмечены точки , , так, что = 7 дм, = 5 дм. Какой может быть длина отрезка ?

4. В скольких точках пересекаются 12 прямых, из которых ровно 5 параллельны друг другу и никакие три не проходят через 1 точку?

5. Нарисуйте шесть прямых так, чтобы у них было ровно пять точек пересечения.

👇
Открыть все ответы
Ответ:
V73663
V73663
11.02.2023

При делении целых чисел на 11 мы получаем остатки от 0 до 10. Рассмотрим какие остатки могут давать целые числа в пятой степени при делении на 11. Для этого достаточно возвести числа от 0 до 10 в пятую степень и рассмотреть остатки от их деления на 11. В итоге получим, что при делении целых чисел в пятой степени на 11 получаются остатки 0, 1 и 10. В левой части уравнения стоит сумма трех целых чисел в пятой степени. Следовательно, она может давать остатки 0, 1, 2, 3, 8, 9 и 10. Но 2009 при делении на 11 дает остаток 7. Следовательно уравнение не имеет решений в целых числах.

4,8(24 оценок)
Ответ:
omka02
omka02
11.02.2023

как всегда с логарифмами ОДЗ и решать неравенство

log(a) b    a>0 a≠1 b>0

смотрим и видим что проверять надо только b>0

cначала решим, потом одз найдем и все пересечем

log(1/3) (log(5) ( log(2) (7x - 3)/(x - 4 ≥ 0

log(1/3) (log(5) ( log(2) (7x - 3)/(x - 4 ≥ log(1/3) 1

основание меньше 1, меняем знак при снятии логарифма

log(5) ( log(2) (7x - 3)/(x - 4)) ≤  1

log(5) ( log(2) (7x - 3)/(x - 4)) ≤  log(5) 5

log(2) (7x - 3)/(x - 4) ≤  5

log(2) (7x - 3)/(x - 4) ≤  log(2) 2^5

(7x - 3)/(x - 4) - 32 ≤  0

(7x - 3 - 32x + 128)/(x - 4) = (125 - 25x)/(x - 4) ≤ 0

(x - 5)/(x - 4) ≥ 0

(4) [5]

x ∈ (-∞, 4) U [5, +∞)

ну и пошли одз считать

1. (7x - 3)/(x - 4) > 0

2. log(2) (7x - 3)/(x - 4) > 0

log(2) (7x - 3)/(x - 4) > log(2) 1

(7x - 3)/(x - 4) > 1

3. log(5) ( log(2) (7x - 3)/(x - 4)) > 0

log(5) ( log(2) (7x - 3)/(x - 4))  > log(5) 1

log(2) (7x - 3)/(x - 4) > 1

log(2) (7x - 3)/(x - 4) > log(2) 2

(7x - 3)/(x - 4) > 2

видим что одно значение > 0, 1 и 2

можно каждое посчитать а можно одно большее 2 и оно будет самым обширным

(7x - 3)/(x - 4) - 2 > 0

(7x - 3 - 2x + 8)/(x - 4)  > 0

(5x + 5)/(x - 4) > 0

(-1)(4)

x ∈ (-∞, -1)  U (4, +∞) пересекаем с x ∈ (-∞, 4) U [5, +∞)

ответ x ∈ (-∞, -1) U [5, +∞)

4,8(89 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ