2 корня
Объяснение:
x⁴+ax²+b=0
Данное уравнение является биквадратным и должно иметь 4 корня. По условию, оно имеет три корня, т.е. три действительных корня. При b=0 это возможно.
Покажем это:
Замена: x²=y
y²+ay+b=0
При b=0 y²+ay=0
y(y+a)=0
y=0 или y+a=0
y=-a
Обратная замена: y=x²
x²=0 или x²= -a
x₁=0 x₂=√-a x₃=-√-a
Итак, уравнение x⁴+ax²+b=0 имеет три корня
При b=0 уравнение x⁴+bx²+a=0 при b=0 преобразуется в уравнение
x⁴+a=0
x⁴= -a
Получаем, что это уравнение имеет два корня
{3-3x^2≥0
{3+x>0
+ - +
x^2-1≥0; x=-1 ili x=1 (-1)1>x
x∈(-∞; -1] ∪[1;+∞) - + -
2) 3*(1-x^2)≥0; x=-1 ili x=1 (-1)1>x
x⊂[-1;1]
3) 3+x>0; x>-3
общее решение: x=-1 i x=1
если х=-1, то √1-1 -8^√(3-3) *log(2) (3-1)=-1;
0-1*1=-1 x=-1-корень уравнения!
х=1 0-1*log(2) (3+1)=1; -2=1 неверно
ответ. -1