М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dariyakazakova1
dariyakazakova1
09.02.2023 20:26 •  Алгебра

Уравнение очень легкое! Просто я тупой.
Решите уравнение:


Уравнение очень легкое! Просто я тупой. Решите уравнение:

👇
Ответ:
Dasha021659
Dasha021659
09.02.2023

x = -27

Объяснение:

\sqrt[3]{ - x} = 3 \\ (\sqrt[3]{ - x})^{3} = 3 ^{3} \\ \sqrt[3]{( - x)^{3} } = 27 \\ - x = 27 \\ x = - 27

4,4(61 оценок)
Открыть все ответы
Ответ:
SirykValia
SirykValia
09.02.2023
ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). 
Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50. 
4,5(42 оценок)
Ответ:
DarinaDoka666
DarinaDoka666
09.02.2023
Все задания сводятся к решению квадратных неравенств. Если у неравенства коэф-т при x^2<0, то можно умножить обе части на (-1).
Общий вид квадратного трехчлена ax^2+bx+c. Для решения неравенства
ax^2+bx+c>=(<)0 можно применять графический
Решая квадратное уравнение находим точки пересечения параболы с осью OX.
Если a>0, то ветви направлены вверх
x1 и x2 - корни уравнения, причем x1<x2
ax^2+bx+c>0, если x∈(-∞;x1)∨(x2;+∞)
ax^2+bx+c<0, если x∈(x1;x2)
1.3x^2-2x-4=0⇒x=(1+(-)√1+3*4)/3⇒x1=(1-√13)/3; x2=(1+√13)/3; x1>x2
3x^2-2x-4>0, если x∈(-∞;(1-√13)/3)∨((1+√13)/3;+∞)
Оценим значения корней
3<√13<4⇒4<1+√13<5⇒4/3<(1+√13)/3<5/3⇒
4; 6 и 2006 принадлежат интервалу ((1+√13)/3;+∞)
-4<-√13<-3⇒-3<1-√13<-2⇒-1<(1-√13)/3<-2/3⇒
-3; -2 принадлежат интервалу ((-∞;1-√13)/3)
Решениями неравенства не являются 0 и 1
2. (a^2-16)/(2a^2-3a+3)>0⇒(a^2-16)*(2a^2-3a+3)>0 и 2a^2-3a+3≠0
Найдем ОДЗ: 2a^2-3a+3=0; D=b^2-4ac=3^2-2*3*4=9-24<0⇒ 2a^2-3a+3>0 для всех a. Значит и (a^2-16)>0⇒(a-4)(a+4)>0
a1=-4; a2=4 - корни уравнения (a-4)(a+4)=0⇒
a∈(-∞;4)∨(4;+∞)
3. y=√2x/(6-x)
ОДЗ: 2x/(6-x)>=0⇒x*(6-x)>=0 и (6-x)≠0; x≠6
x1=0; x2=6 - корни уравнения x*(6-x)=0 ⇒
x∈(-∞;0]∨(6;+∞)
4. .I3x2-4x-4I=4+4x-3x2⇒I3x^2-4x-4I=-(3x^2-4x-4)⇒по определению модуля
Нужно решить неравенство 3x^2-4x-4<0
3x^2-4x-4=0⇒x=(2+(-)√4+4*3)/3⇒x1=(2-4)/3=-2/3; x2=(2+4)/3=2⇒
x∈(-2/3;2)
Во всех этих случаях хорошо сделать эскиз параболы, Для этого на оси x отметить корни уравнения и знать направление ветвей.
Неравенство >0 для тех значений x, где ветви параболы выше оси x.
Неравенство<0 для тех значений x, где ветви параболы ниже оси x.
4,4(8 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ