Решением системы неравенств называют такие значения переменной, которые являются решениями сразу всех неравенств, входящих в эту систему. Решить систему неравенств – значит найти решения для всей системы, либо доказать, что у данной системы решений нет. Чтобы решить систему неравенств с одной переменной, надо: 1) отдельно решить каждое неравенство; 2) найти пересечение найденных решений. Это пересечение и является множеством решений системы неравенств. Пример: Решите систему неравенств |4x + 4 ≥ 0 |6 – 4x ≥ 0 Решение: |4x ≥ –4 |–4x ≥ –6 ↓ |x ≥ –4 : 4 |x ≥ –6 : (–4) ↓ |x ≥ –1 |x ≥ 1,5 ответ: [–1; 1,5]
1)(3a-2)(3a+2)
2)(5-1)(5+1)
3)(10a-0.5b)(10a+0.5b)
4)(x^6-y)(x^6+y)
5)(m^3-n^3)(m^3+n^3)
6)(x^2-y^2)(x^2+y^2)