6 - формула разницы квадратов сюда заходит, если в первой скобке одночлены местами поменять
Получится (11-24)=-13
7 - Формулы квадрата суммы и квадрата разности, просто подставляешь и проблем не знаешь
8 - sqrt( 3*(y+7)^2 ), там квадрат суммы, нужно будет раскрыть для полноты ответа
9 и 10 долго, в 9-м просто раскрывай все скобки, там должно хорошо всё сократиться, а в 10-м 48 расписываешь как произведение 16 и 3, 16 выносишь из первого корня как 4 и так по накатанной
Решение на фото: Алгоритм нахождения экстремумов: функции(наибольшее и наименьшее значение функции) •Находим производную функции Приравниваем эту производную к нулю Находим значения переменной получившегося выражения (значения переменной, при которых производная преобразуется в ноль) Разбиваем этими значениями координатную прямую на промежутки (при этом не нужно забывать о точках разрыва, которые также надо наносить на прямую), все эти точки называются точками «подозрительными» на экстремум Вычисляем, на каких из этих промежутков производная будет положительной, а на каких – отрицательной. Для этого нужно подставить значение из промежутка в производную.
Т.к. sin(x) - непрерывная функция, она интегрируема, и можно выбирать любое разбиение с любыми точками на нем. Разобьем [a,b] на n равных частей и возьмем значения функции в левых точках получившихся отрезков: ∑ sin(a + k*(b-a)/n) * (b-a)/n, где k = 0 .. n-1
Здесь были применены формулы cos(x+y) = cos(x)cos(y) - sin(x)sin(y) cos(x-y) = cos(x)cos(y) + sin(x)sin(y) Тогда sin(x)sin(y) = 1/2 (cos(x-y) - cos(x+y)) Где x = a + k*(b-a)/n, y = (b-a)/2n
y было выбрано так, чтобы все косинусы, кроме крайних, попадали в сумму с разными знаками и сокращались.
Исходная сумма ∑ sin(a + k*(b-a)/n) * (b-a)/n преобразуется к виду (b-a)/n * 1/(2sin( (b-a)/2n )) * ∑ [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)], k = 0 .. n-1
Т.к. cos(a + (k + 1/2) * (b-a)/n) = cos(a + ((k+1)-1/2) * (b-a)/n), соответствующие слагаемые в сумме сокращаются, как и рассчитывалось. Т.е.
При n ⇒ ∞, это выражение стремится к cos(a) - cos(b)
Что касается коэффициента (b-a)/n * 1/(2sin( (b-a)/2n )) перед суммой, при n ⇒ ∞ синус стремится к своему аргументу, т.е. (b-a)/n * 1/(2sin( (b-a)/2n )) ⇒ (b-a)/n * 1/(2 * (b-a)/2n)) = 1
Т.е. сумма стремится cos(a) - cos(b) при n ⇒ ∞, причем этот предел по определению и является искомым определенным интегралом (диаметр разбиения (b-a)/n стремится к 0)
1 - в
2 - г
3 - 5/sqrt(15)=(числитель и знаменатель умножаем на корень из 15)5*sqrt(15)/sqrt(15)*sqrt(15)=5*sqrt(15)/15=sqrt(15)/3
Примечание: sqrt - это корень, например sqrt(15) - это корень из 15
4 - Cумма=-2*sqrt(6)
Разность=-4*sqrt(6)
Произведение=-18
Частное = -3
5 - 5*sqrt(6)+2*sqrt(6)+4*sqrt(6)=sqrt(6)*(5+2+4)=11*sqrt(6)
6 - формула разницы квадратов сюда заходит, если в первой скобке одночлены местами поменять
Получится (11-24)=-13
7 - Формулы квадрата суммы и квадрата разности, просто подставляешь и проблем не знаешь
8 - sqrt( 3*(y+7)^2 ), там квадрат суммы, нужно будет раскрыть для полноты ответа
9 и 10 долго, в 9-м просто раскрывай все скобки, там должно хорошо всё сократиться, а в 10-м 48 расписываешь как произведение 16 и 3, 16 выносишь из первого корня как 4 и так по накатанной