13 деталей
Объяснение:
Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.
Пусть х рублей стоит один карандаш, а у рублей — одна ручка.
Тогда (4х + 3у) рублей стоят 4 карандаша и 3 ручки, что составляет 70 рублей. Значит, можно записать, что 4х + 3у = 70.
(2х + у) рублей заплатили за 2 карандаша и 1 ручку, что составляет 28 рублей. Следовательно, 2х + у = 28.
Решим систему уравнений:
2х + у = 28,
4х + 3у = 70;
у = 28 - 2х,
4х + 3 * (28 - 2х) = 70;
у = 28 - 2х,
4х + 84 - 6х = 70;
у = 28 - 2х,
4х + 84 - 6х = 70;
у = 28 - 2х,
-2х = 70 - 84;
у = 28 - 2х,
-2х = -14;
у = 28 - 2х,
х = -14 : (-2);
у = 28 - 2х,
х = 7.
ответ: один карандаш стоит 7 рублей.