Свойства функции y=sinx
1. Область определения — множество R всех действительных чисел.
2. Множество значений — отрезок [−1;1].
3. Функция y=sinx периодическая с периодом T= 2π.
4. Функция y=sinx — нечётная.
5. Функция y=sinx принимает:
- значение, равное 0, при x=πn,n∈Z;
- наибольшее значение, равное 1, при x=π2+2πn,n∈Z;
- наименьшее значение, равное −1, при x=−π2+2πn,n∈Z;
- положительные значения на интервале (0;π) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈Z;
- отрицательные значения на интервале (π;2π) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈Z.
6. Функция y=sinx:
- возрастает на отрезке
[−π2;π2] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈Z;
- убывает на отрезке
[π2;3π2] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈Z.
Объяснение:
походу) если неправильно сори)
x-x1 y-y1
= x1=-1 x2=3 y1=8 y2=-4
x2-x1 y2-y1
x-(-1) y-8 x+1 y-8 x+1 y-8
= ⇔ = или =
3-(-1) -4-8 4 -12 1 -3
-3(x+1)=y-8 или y=-3x+5
y=kx+b
A(-1;8) ∈ y=kx+b ⇔ 8=k(-1)+b -k+b=8
и B(3;-4)∈ y=kx+b ⇔-4=k(3)+b ⇔ 3k+b=-4 ⇔4k=-12 k=-3
b=8+k=5
y=-3x+5
проверка
A(-1;8) и B(3;-4)∈ y=kx+b y=-3x+5
A(-1;8) 8=-3(-1)+5 верно
B(3;-4) -4=-3(3)+5 верно