ответ: 15
Объяснение:
y=7tgx-7x+15
y'=7·(tgx)'-7·x'+15'
y'=7·1/cos²x -7
y'=7·(1/cos²x -1)=7·(1-cos²x)/cos²x=7·sin²x/cos²x=7·tg²x
y'=7·tg²x
7·tg²x=0
tg²x=0
tgx=0
x=π·n, n∈z
Только при n=0, x=0∈[-пи/4);0]
y(-π/4)=7·tg(-π/4)-7·(-π/4)+15=-7+7π/4+15=8+7·π/4
y(0)=7·tg0-7·0+15=-0-0+15=15
Сравним 8+7·π/4
3<π<3,2⇒ 3/4<π/4<3,2/4⇒ 7·3/4<7·π/4<7·3,2/4⇒5,25<7·π/4<5,6⇒
8+5,25<8+7·π/4<8+5,6⇒13,25<8+7·π/4<13,6⇒8+7·π/4<15⇒15- наибольшее значение функции y=7·tgx-7·x+15 на отрезке [-пи/4;0]
ответ:15
Пусть х (кг) - вес первоначального сплава.
х-22 (кг) - вес магния.
Процентное содержание магния в сплаве - 100*(х-22)/х.
После добавления 15 кг магния вес сплава стал - х+15 (кг).
Процентное содержание магния в нём стало 100*(х-22+15)/(х+15), что на 33% больше, чем в первоначальном сплаве.
Составим уравнение:
100*(х-22+15)/(х+15) - 100*(х-22)/х = 33
100*(х-7)*х-100*(х-22)*(х+15)=33*х*(х+15)
100х2-700х-100х2+2200х-1500х+33000=33х2+495х
33х2+495х-33000=0 I:33
х2+15x-1000=0
х=25; х=-40 - вес не может быть отрицательным
ответ: сплав первоначально весил 25 кг
1.b3=b1*q^2,
b5=b1*q^4
b6=b1*q^5
2.4=b1*q^2
0.32=b1*q^4 разделим 2-ое уравнение на первое, получим
q^2=0,32/2,4
q^2=0.02*2^4/0.3*2^3
q^2=0.02*2=0.3=4/30=2/15
q=√2/15=0.36
b6=b5*q^5=0,32*(0.36)^5=0.32*0.006=0.00192
2.b1=18,b2=-12,b3=8
q=b2/b1=-12/18=-2/3
Sn=b1(q^n-1)/(q-1)=18*(-2/3)^n-1)/-2/3-1=18*( (-2/3)^n-1)/-5/3=54/5*(-2/3)^n-1)
3.x1=0.48, x2=0.32
q=x2/x1=0.32/0.48=2/3
S10=x1(q^10-1)/q-1=0.48(2/3)^10-1)/2/3-1=0.48(1024/59049-1)/-1/3=0.48*58025/59049/-1/3=27852/59049*(-3)=-83556/59049=-1.42
4.0.2(3)=23/100