Нули функции (-5; 0) (-1; 0) (4; 0) (10; 0)
У>0 при х∈(-5, -1) и при х∈(4, 10)
Объяснение:
а)Нули функции это точки пересечения графиком оси Ох, где у ВСЕГДА равен нулю.
Таких точек здесь 4, координаты: (-5; 0) (-1; 0) (4; 0) (10; 0)
б)Если заменить слово "аргумент" на х, а "функция" на у, то понятно, что нужно определить, при каких значениях х у>0.
На графике ясно видны эти отрезки, где функция выше оси Ох.
Таких отрезков 2: от -5 до -1 и от 4 до 10.
У>0 при х∈(-5, -1) и при х∈(4, 10)
Условию удовлетворяет только одна пятерка последовательных натуральных чисел:
10; 11; 12; 13; 14
и
10²+11²+12² = 13²+14² = 365
Объяснение:
Пусть, x - первое число последовательности.
Т.к. нам нужны пять последовательных натуральных (то есть целых, неотрицательных) чисел, то они будут выглядеть так:
x; x+1; x+2; x+3; x+4
Причем x > 0
Известно, что равны:
- сумма квадратов первых трёх чисел
- сумма квадратов двух последних чисел.
т е.
Преобразуем, раскрыв скобки:
По Т. Виетта:
или через дискр-нт. Т.к. b четное, возьмем D/4:
а корни будут равны
Так как в условии указано, что числа - последовательные натуральные, значение
x= -2 - не подходит, т.к. число -2 отрицательное и не является натуральным
Следовательно, первое число из пяти искомых - это 10, а вся последовательность имеет вид:
10; 11; 12; 13; 14
Проверим - и действительно:
сумма квадратов первых трёх чисел равна сумме квадратов двух последних чисел.