Пусть точка C(0, m) - центр окружности (так как по условию центр лежит на оси OY, то первая координата равна 0)
Известно, что расстояние от центра до любой точки на окружности является константой и равно радиусу R окружности
Наша окружность проходит через точку 7 на оси OY, значит R = 7 - m
Также окружность проходит через точку 5 на оси OX, значит по теореме Пифагора
Приравняем это и получим уравнение:
Возвёдём в квадрат и решим уравнение:
Координата центра окружности -
Радиус окружности:
Уравнение окружности выглядит следующим:
Подставим наши числа:
ответ:
Потом находишь общий знаменатель:(х+1)(х+2)(х+4)(х-1).
к первой дроби дополнительный множитель:(х-1)(х+4)
ко второй:(х+1)(х+2)
к единице все скобки
получается:6х квадрат+24х-6х-24+8х квадрат+16х+8х+16-х в 4-ой степени+4х в кубе+х в кубе-4х квадат+2х в кубе-8х квадрат-2х квадарт+8х+х в кубе-4х квадарт-х квадарт+4х+2х квадрат-8х-2х+8
приводим подобные слагаемые:-х в 4-ой степени +8х в кубе-7х квадрат +44х/(х+1)(х+2)(х-1)(х+4)
теперь умножаем на (-1) и меняем знаки на противоположные (в числителе)
затем система, числитель равен нулю, а знаменатель не равен нулю