вся работа=1 время первой бригады х, второй у. 1\х-работа первой бригады за 1 день, 1\у-работа второй бригады за день, составляешь систему: 1) у=х+5
2)1\х+1\у=1\6
и решаешь , избавляешься от знаменателя, находишь дополнительные множители(забыла написать, вместо игрека во второе уравнение подставляешь х+5) к первому дополнительный 6(х+5), ко второму 6х, а к третьему х(х+5) и решаешь:
6(х+5)+6х=х(х+5)
6х+30+6х=х^2+5х
х^2+5х-6х-6х-30=0
х^2-7х-30=0
и решаешь это квадратное уравнение.
D=(-7)^2-4*1*(-30)=49+120=169
х1=(7+13):2=10 дней-время первой бригады.
х2<0-не подходит по смыслу
и находишь у=10+5=15 дней-вторая бригада.
ответ:время первой бригады-10 дней, второй-15 дней.
Чтобы привести многочлен к стандартному виду, нужно:
Привести каждый одночлен многочлена к стандартному виду.
Выполнить приведение подобных одночленов.
Степенью многочлена стандартного вида называют наибольшую из степеней, входящих в его запись.
1) 8ху⁴х³-9х³уу⁷+10zz⁵= 8х¹⁺³у⁴ - 9 х³у¹⁺⁷ +10 z¹⁺⁵= 8x⁴y⁴ -9x³y⁸+10z⁶
найдем степень многочлена :
8x⁴y⁴ : 4+4=8
9x³y⁸: 3+8= 11
10z⁶ : 6
Наибольшая степень 11 - это и будет степенью многочлена
2) 0,2а⁵bb⁶ - 1,1xyx⁷+k⁸t²k= 0,2a⁵b⁷ - 1.1x⁸y +k⁹t²
найдем степень многочлена :
5+7= 12
8+1=9
9+2= 11
Наибольшая степень 12 - это и есть степень многочлена
3)
найдем наибольшую степень :
2+5= 7
8+10=18
16+8=24
Степень многочлена - 24
4)
найдем наибольшую степень :
10+3=13
8+8=16
10
Степень многочлена - 16
Объяснение: