Графическое решение - это построение двух графиков: параболы у = х² и прямой линии у = -х + 6. Точки их пересечения и есть решение заданного уравнения.
Проверку правильности построения и определения точек можно выполнить аналитически. х² = 6 - х х² + х - 6 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=1^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25; Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-1)/(2*1)=(5-1)/2=4/2=2;x_2=(-√25-1)/(2*1)=(-5-1)/2=-6/2=-3.
График и таблица точек для построения параболы даны в приложении. Для построения прямой достаточно двух точек: х = 0, у = 6, х = 3, у = -3+6 = 3
Метод подстановки. если есть система, например, х + y = 10 xy = 1. то можно выразить х или у. из первого уравнения x = 10 - y, выразили х, при этом у перенесли с обратным знаком направо. теперь вместо х во втором уравнении подставляем его выражение: xy = 1 => (10 - y)y = 1, -1 + 10y + y^2 = 0. не удачное, но квадратное уравнение. принцип: выразить одно через другое, и это одно везде заменить его выражением. сложение. например, дана система, ax + by = a cx - dy = b. здесь буквы, кроме х и у, это просто некоторые числа, абстрактно. и если вот таким образом: ax+cx + by - dy = a + b (к первому уравнению прибавили второе) cx - dy = b, (второе остаётся без изменения) из первого уравнения сразу выражается какая-нибудь переменная как число, то потом во второе подставляется вместо этой переменной число. возможно, таких сложений надо будет сделать несколько. возможно, будет лучше ко второму прибавлять первое, тогда без изменений останется первое.
какой это класс?
Объяснение:
1)45
2)48