X⁴-15x²-16=0 через замену у=х² получаем уравнение у²-15х - 64=0 находим d=b²-4ac=15²-4*1*(-16)=225+64=289 ⇒√d=17 находим у₁=(15-17): 2=-1 у₂=(15+17): 2= 16 вернёмся к замене х²= -1 уравнение решений не имеет х²=16 , следовательно х₁=4 и х₂= -4 2. рациональное уравнение : к общему знаменателю(3+х)(3-х) и найдём дополнительные множители к слагаемым. получаем уравнение (3х+1)(3-х)+х(3+х)=18 раскроим скобки 9х-3х²+3-х+3х+х²-18=0 -2х²+11х-15=0 домножим всё на (-1) 2х²-11х+15=0 найдём d=121-2*4*15=1 находим корни х₁=(11+1): 2=6 и х₂= (11-1): 2=5 оба корня знаменатель не обращают в 0 значит ответ 6 и 5
Если среди a, b,c есть одинаковые, то ответ очевиден (если, скажем, a=b, то выражение обращается в ноль при x=a=b). Пусть они все разные. Обозначив функцию, стоящую в левой части уравнения, через f(x), сосчитаем f(a)=(a-b)(a-c); f(b)=(b-a)(b-c); f(c)=(c-a)(c-b). Тогда f(a)·f(b)·f(c)= -(a-b)^2(b-a)^2 (c-a)^2<0 ⇒ или все три перемножаемых числа отрицательны, или одно из них. Во Всяком случае, в какой-то точке наша функция отрицательна. А поскольку исследуемая функция квадратичная с положительным старшим коэффициентом, ее график - парабола с ветвями, смотрящими вверх, обязательно пересечется с осью OX.
4 - х² = 2х - 4
-х² - 2х - 4 + 4 = 0
-х² - 2х = 0
х (-х - 2) = 0
х = 0 и - х - 2 = 0
х = 0 и х = - 2.
ответ: 0 ; - 2.
Удачи