120 : (- 8 * (- 3) + 12 : (- 3)) - (- 48) : (- 16) = - 9
1) - 8 * (-3) = 24
2) 12 : (-3) = - 4
3) 24 + (- 4) = 20
4) - 120 : 20 = - 6
5) - 48 : (- 16) = 3
5) - 6 - 3 = - 9
- 75 * 4 - 204 : (- 3) + (- 210) : (- 7) = - 202
1) - 75 * 4 = - 300
2) 204 : (- 3) = - 68
3) - 210 : (- 7) = 30
4) - 300 - (- 68) = - 300 + 68 = - 232
5) - 232 + 30 = - 202
- 20,25 : (- 3,6) + 90,72 : (- 4,5) - 7,5 * 3,2 = - 38,535
1) - 20,25 : (- 3,6) = 5,625
2) 90,72 : (- 4,5) = - 20,16
3) 7,5 * 3,2 = 24
4) 5,625 + (- 20,16) = 5,625 - 20,16 = - 14,535
5) - 14,535 - 24 = - 38,535
Задача. Пусть х - цена ткани до подорожания. Процент - это сотая часть числа: 20% = 0,2; 25% = 0,25.
1) х * 0,2 + х = 1,2х - цена ткани после повышения цены на 20%;
2) 1,2х * 0,25 + 1,2х = 1,5х - цена ткани после повышения новой цены на 25%
3) Пропорция: 1 - 100% (первоначальная цена)
1,5 - х (окончательная цена)
х = 1,5 * 100 : 1 = 150%
150% - 100% = 50% - на столько процентов была повышена первоначальная цена.
100 k + 10k + k = 111*k, где k = 1, 2,,9
Последовательный ряд натуральных чисел, начиная с 1 является возрастающей арифметической прогрессией с первым членом а1 = 1 и разностью d = 1 .
А найденная сумма 111*k есть Sn - сумма n-первых членов арифметической прогрессии, которые надо сложить, чтобы получить наше трехзначное число. Тогда по формуле суммы n-первых членов арифметической прогрессии
Sn = ( 2а1 + (n-1)*d / 2 ) * n
Подставим сюда числовые значения Sn, а1 и d и найдем n :
111*k = ( 2*1 + (n-1)*1 / 2 ) * n
111*k = ( 2 +n-1 / 2 ) * n
111*k = ( 1 +n / 2 ) * n
111*k = n + n^2 / 2
222*k = n + n^2
n^2 + n - 222*k = 0
D = 1 + 4*222*k = 1 + 888*k
Т.к. n - натуральное число, то SQRT( D ) должно быть целым, значит
число 1 + 888*k должно быть полным квадратом, т.е заканчиваться цифрой 1, 4, 5, 6 или 9. Соответственно 888*k может заканчиваться на 0, 3, 4, 5, 8.
На 3 или 5 888*k не может заканчиваться.
Если 888*k заканчивается на 0, то k=5
Если 888*k заканчивается на 4, то k=3 или k=8.
Если 888*k заканчивается на 8, то k=1 или k=6.
Т.о. k может быть 1, 3, 5, 6, 8.
Проверим при каком из этих значений 1 + 888*k является квадратом:
при k=1 1 + 888*1 = 889 (нет)
при k=3 1 + 888*3 = 2665 (нет)
при k=5 1 + 888*5 = 4441 (нет)
при k=8 1 + 888*8 = 7105 (нет)
при k=6 1 + 888*6 = 5329 (да, тогда SQRT( D ) = SQRT( 5329 ) = 73 )
n =( -1 + 73)/2 = 72/2 = 36
ОТВЕТ: нужно сложить 36 последовательных натуральных чисел, начиная с 1, получится число 666.