Пусть а, b и с — три цифры, задуманные Васей. Существует девять двузначных чисел, в десятичной записи которых используются только эти цифры: ; ; ; ; ; ; ; ; . Найдем их сумму, разложив каждое из чисел в виде суммы разрядных слагаемых: (10a + a) + (10b + b) + (10c + c) + (10a + b) + (10b + a) + (10a + c) + (10c + a) + (10b + c) + (10c + b) = 33a + 33b + 33c = 33(a + b + c). По условию, 33(a + b + c) = 231, то есть, a + b + c = 7. Существует единственная тройка различных и отличных от нуля цифр, сумма которых равна 7.
Нехай наше початкове число буде дорівнювати х. х=100%, тоді 30% від початкового числа будуть дорівнювати 0,3х.
Початкове число збільшили на 30 відсотків, тому число яке отримали буде дорівнювати х+0,3х=1,3х.
Потім зменшили число на 30%, але зауважу, зменшили не початкове число, а те число, яке ми отримали, тому це буде 30% від 1,3х. 100%=1,3х 30%=
Оскільки наше число зменшили, то отримане число буде дорівнювати 1,3х-0,39х=0,91х . Початкове число 1х, а отримане 0,91х. 1х-0,91х=0,09х отже число зменшилося на 9%.
1,2,4
Объяснение:
Пусть а, b и с — три цифры, задуманные Васей. Существует девять двузначных чисел, в десятичной записи которых используются только эти цифры: ; ; ; ; ; ; ; ; . Найдем их сумму, разложив каждое из чисел в виде суммы разрядных слагаемых: (10a + a) + (10b + b) + (10c + c) + (10a + b) + (10b + a) + (10a + c) + (10c + a) + (10b + c) + (10c + b) = 33a + 33b + 33c = 33(a + b + c). По условию, 33(a + b + c) = 231, то есть, a + b + c = 7. Существует единственная тройка различных и отличных от нуля цифр, сумма которых равна 7.