а) к≠3, любое из чисел. например -9, или 14 - единственное решение.
не имеет решений, когда к=3 прямые параллельны, общих точек нет.
чтобы система имела решение, надо, чтобы прямые совпадали. т.е. к=3, а вместо 4 поставить -5, но т.к. уже 4 подобрана, то подобрать невозможно.
б) аналогично. упростим первое у=1.5х,
единсвт. решение , когда угловые коэф. различные -подобрать невозможно. при к-2 бесконечное множество решений. прямые совпадут. а при к≠-2 решений нет. т.к. прямые параллельны.
в)у=0.5-кх/2; у=0.5-4х
При к=8 бесконечное число решений, при к≠8 единственное, а для того, чтобы система не имела решений, к подобрать невозможно, т.к. уже совпадают 0.5 и 0.5- это ординаты точек пересечения графиков с осью оу.
Объяснение:
≤0
(x-2)
решим методом интервалов
значения х обращающие числитель и знаменатель в 0
это х={-4, 0, 2}
рассмотрим знак выражения при х принадлежащих интервалам
1) при х∈(-∞,-4) возьмем какое-либо значение из этого интервала например -5 и вычислим значение выражения 3(-5)(-5+4)/(-5-2)=-15/7<0 знак -
2) при х∈(-4, 0) например х=-2 , 3(-2)(-2+4)/(-2-2)=12/2>0 знак +
3) при х∈(0,2) например х=1 , 3*5/(1-2)=-15<0 знак -
4) при х∈(2,+∞) например х=3 3*3(3+7)/(3-2)>0 знак +
выберем те интервалы у которых знак - значения которые обращают числитель в 0 включим, которые обращают знаменатель в 0 исключим
х∈ (-∞;-4]U[0;2)