К графику функции y = f(x) = x² - 4x из точки А(3;-19) проведены касательные. Напишите уравнения этих касательных.
Объяснение:
! ! А(3; - 19) ∉ к графику функции y = x² - 4x 3² -4*3 = -3 ≠ -19
Уравнение касательной к графику функции y = f(x) в точке
(x₀ ; y₀) имеет вид :
y = f (x₀) +f ' (x₀) (x - x₀)
f (x₀) = x₀² - 4x₀
f '(x) = (x² - 4x ) ' = 2x - 4 ⇒ f '(x₀) = 2x₀ - 4 =2(
y = x₀² - 4x₀ +(2x₀ - 4 )( x- x₀ ) = x₀² - 4x₀ +(2x₀ - 4)* x - 2x₀² + 4x₀
y = (2x₀ - 4) )* x - x₀². * * * k = 2x₀ - 4 ; b = - x₀² * * *
Касательные проведены из точки А(3;-19) ,следовательно :
- 19 = 2(x₀ - 2 )*3 - x₀² ⇔ x₀²- 6x₀ - 7 = 0 _ квадратное уравнение относительно x₀. * * * x₀ = 3 ± √( (3² -(-7) ) ⇔ x₀ = 3 ± 4 * * *
или x₀ = - 1 ; x₀ =7 по теореме Виета .
или x₀²- 6x₀ - 7 = 0 ⇔ x₀²- 7x₀ + x₀ - 7=0 ⇔x₀(x₀ -7)+ (x₀ - 7) =0 ⇔
(x₀ +1) (x₀ - 7) =0 ⇒ x₀ = - 1 ; x₀ = 7 .
Уравнение касательной будет :
а ) y = (2*(-1) - 4 )*x - (-1)² = - 6x - 1 ; T₁ (-1 ; 5)
б) y = (2*7 - 4 )* x - 7² = 10x - 49 ; T₂(7; 21) .
y = - 6x - 1, y = 10x - 49 .
* * * T₁ (-1 ; 5) и T₂(7; 21) точки касания * * *
Постройте график функции у=х²+4х-2
Уравнение графика параболы со смещённым центром, ветви параболы направлены вверх.
Найдём координаты вершины параболы (для построения):
х₀= -b/2a= -4/2= -2
y₀= (-2)²+ 4*(-2) -2 =4 -8 -2= -6
Координаты вершины параболы (-2; -6)
Нужны дополнительные точки для построения графика. Придаём значения х, получаем значения у, составляем таблицу:
х -5 -4 -3 -2 -1 0 1
у 3 -2 -5 -6 -5 -2 3
По найденным точкам можно построить график параболы.
а)Подставляем в уравнение значение х=1,5 получаем у:
у=х²+4х-2
у= (1,5)² + 4*1,5 -2= 2,25+6-2= 6,25
б)Наоборот, заменяем у на 4:
у=х²+4х-2
х²+4х-2=4
х²+4х-6=0, квадратное уравнение, ищем корни:
х₁,₂=(-4±√16+24)2
х₁,₂=(-4±√40)2
х₁,₂=(-4±6,3)2
х₁=5,15
х₂=1,15
в)у=х²+4х-2
y <0
х²+4х-2<0
Решаем, как квадратное уравнение:
х²+4х-2=0
х₁,₂=(-4±√16+8)2
х₁,₂=(-4±√24)2
х₁,₂=(-4±4,9)2
х₁= -4,45
х₂= 0,45
у(х) <0 при -4,45 < х < 0,45
г)Функция возрастает на промежутке ( -2; ∞)