1) Если числитель и знаменатель дроби умножить на 5, то дробь не изменится. Пусть - некая дробь. Умножим числитель и знаменатель на 5:
Как видим, пятёрки сокращаются, дробь не меняется. Утверждение верно.
2) Если знаменатель положительной дроби увеличить в 2 раза,то дробь уменьшится в 2 раза. Пусть - некая дробь. Умножим знаменатель на 2:
Как видим, дробь уменьшилась в 2 раза. Утверждение верно.
3) При умножении двух нецелых чисел всегда получается нецелое число. Чтобы опровергнуть данное утверждение, достаточно привести один опровергающий пример:
Как видим на примере, при умножении двух нецелых чисел мы получили целое число. Поэтому утверждение неверно.
4) Если к числителю и знаменателю дроби прибавить 2 то дробь не изменится. Прибавим к числителю и знаменателю 2:
Чтобы дробь не изменилась должно выполняться следующее условие:
Итак, мы видим, чтобы дробь не изменилась, числитель д.б. равен знаменателю. Иначе дробь изменится. Поэтому в общем случае утверждение неверно.
a^10 - a^5*b^8 + 25*b^16 = (a^5)^2 - 2*a^5*5b^8 + 9a^5*b^8 + (5b^8)^2 =
= (a^5 - 5b^8)^2 + 9a^5*b^8 = (a^5 - 5b^8)^2 + (3a^(2,5)*b^4)^2
2) (4x-3)(4x+3) - (4x-1)^2 = 3x
16x^2 - 9 - 16x^2 + 8x - 1 = 3x
8x - 3x = 9 + 1
5x = 10
x = 2
3) (3x-1)^2 - 7 < (9x+2)*x + 2
9x^2 - 6x + 1 - 7 < 9x^2 + 2x + 2
-6x - 2x < 2 + 7 - 1
-8x < 8
x > -1
Наименьшее цело число, удовлетворяющее неравенству:
x = 0
Так как неравенство строгое, то -1 не подходит.