М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
rm819189gmail
rm819189gmail
14.03.2020 02:38 •  Алгебра

Найдите значение выражения​


Найдите значение выражения​

👇
Ответ:
Роли5
Роли5
14.03.2020

Б)2/5 или так 0,4

В)3

Объяснение:

ответь на мой последний вопрос есле знаешь

4,5(63 оценок)
Открыть все ответы
Ответ:
kuleminaIV
kuleminaIV
14.03.2020

В решении.

Объяснение:

Постройте график функции у. Найдите вершину и ось симметрии параболы и опишите свойства функции.

2) у = -х² + 4,6;

Уравнение квадратичной функции, график - классическая парабола у = х² со сдвигом по оси Оу вверх на 4,6 единицы, ветви направлены вниз.

а) Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.

           Таблица:

х   -3      -2     -1      0      1       2     3

у  -4,4   0,6   3,6  4,6   3,6   0,6  -4,4

По вычисленным точкам построить параболу.

б) Вычислить вершину параболы:

Формула: х₀ = -b/2a;

у = -х² + 4,6;

х₀ = 0/-2

х₀ = 0;

у₀ = 0² + 4,6

у₀ = 4,6;

Координаты вершины параболы: (0; 4,6).

в) Вычислить ось симметрии:

Х = х₀;

Х = 0.

г) Свойства квадратичной функции у = -х² + 4,6:

1) Областью определения функции  является множество всех действительных чисел, т.е. D(у): (-∞; +∞);

2) Множеством значений функции является промежуток

Е(у): [4,6; -∞);

3) Значение функции y = 4,6 является наибольшим, а наименьшего значения функция не имеет.

4) Функция  является четной, график симметричен относительно оси Оу.

5) Нули функции: х = -2,15;  х = 2,15.

6) На промежутке х∈(0; +∞) функция убывающая,  на промежутке х∈(-∞; 0) - возрастающая.

7) Функция принимает положительные значения на промежутке х∈(-2,15; 2,15);

8) Функция принимает отрицательные значения на промежутке х∈(-∞; -2,15)∪(2,15; +∞).

6) у = -(х+3)² - 2;

Уравнение квадратичной функции, график - классическая парабола у = х² со смещённым центром, со сдвигом по оси Ох влево на 3 единицы и сдвигом по оси Оу вниз на 2 единицы, ветви направлены вниз.

а) Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.

           Таблица:

х  -5     -4     -3     -2     -1

у  -6     -3     -2     -3     -6

По вычисленным точкам построить параболу.

б) Вычислить вершину параболы:

у = -(х + 3)² - 2;

у = -(х² + 6х + 9) -2

у = -х² - 6х - 9 - 2

у = -х² - 6х - 11;

Формула: х₀ = -b/2a;

х₀ = 6/-2

х₀ = -3;

у₀ = -(-3 + 3)² - 2

у₀ = -0² - 2

у₀ = -2;

Координаты вершины параболы: (-3; -2).

в) Вычислить ось симметрии:

Х = х₀;

Х = -3.

г) Свойства квадратичной функции у = -(х + 3)² - 2:

1) Областью определения функции  является множество всех действительных чисел, т.е. D(у): (-∞; +∞);

2) Множеством значений функции является промежуток

Е(у): [-2; -∞);

3) Значение функции y = -2 является наибольшим, а наименьшего значения функция не имеет.

4) Функция общего вида. Не является ни чётной, ни нечётной.

5) Нулей функции нет: график ниже оси Ох, нет с ней пересечения.

6) На промежутке х∈(-3; +∞) функция убывающая,  на промежутке х∈(-∞; -3) - возрастающая.

7) Функция не имеет положительных значений (график ниже оси Ох).

8) Функция принимает отрицательные значения на промежутке х∈(-∞; +∞).


Постройте график функции у.Найдите вершину и ось симметрии параболы и опишите свойства функции. 2)у=
Постройте график функции у.Найдите вершину и ось симметрии параболы и опишите свойства функции. 2)у=
4,5(83 оценок)
Ответ:
sapesalex
sapesalex
14.03.2020

#1

а)

 {(y^{10})}^{6} \times { {(y}^{5})}^{5} \times ( { {(y}^{3})}^{2} = \\ = {y}^{60} \times {y}^{25} \times {y}^{6} = {y}^{91}

б)

 {27}^{3} \times {3}^{6} \times {81}^{4} = {3}^{9} \times {3}^{6} \times {3}^{16} = \\ = {3}^{31}

в)

( \frac{x - y}{x + y} )^{6} \div ( \frac{x + y}{x - y} )^{4} \times ( \frac{x + y}{x - y} )^{11} = \\ = ( \frac{x - y}{x + y} )^{6} \div ( \frac{x + y}{x - y})^{4} \times ( \frac{x - y}{x + y})^{ - 11} = \\ = ( \frac{x - y}{x + y})^{ - 5} \div ( \frac{x + y}{x - y} )^{4} = \\ = {( \frac{x + y}{x - y})}^{5} \div ( \frac{x + y}{x - y} )^{4} = \\ = \frac{x + y}{x - y}

г)

 {8}^{9} \div 16^{3} \times {128}^{3} \div {64}^{2} = {2}^{27} \div {2}^{12} \times {2}^{21} \div {2}^{12} = \\ = {2}^{24}

4,6(10 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ