q^(n-1)=256 (1-q^n)=341*(1-q) или, что то же самое: (q^n-1)=341*(q-1) Вероятно, все ж , q -целое, тогда либо q=2 n=9 либо 4 n=5 либо 16 n=3 256 n=2 Легко видеть, что годится только q=4 n=5 ответ: q=4 n=5 б) 243* (3^(-n)+1)=182*(1/3+1) 243*(1-(-3)^(-n))=182*4/3 729 -3^6*(-3)^(-n)==728 (3^6)*(-3)^(-n)=1 ответ: n=6 an=243*(-1/(3^5))=-1
Удобно записать в виде таблицы всевозможные простые числа, отметив при этом участвующие в их записи цифр (картинка). Видно, что цифры 2, 4 и 5 могут участвовать всего в двух числах, причем во всех случаях одно из чисел - вариант ответа.Предположим, что числа 2 нет в расстановке. Тогда, цифра 2 записывается в составе числа 23. Оставшиеся числа 41 и 5 отлично удовлетворяют условию. Вывод? число 2 может отсутствоватьПредположим, что числа 41 нет в расстановке.Тогда, цифра 4 записывается в составе числа 43. Остались числа 2 и 5. Но цифра 1 осталась незадействованной. Значит, без участия числа 41 такая расстановка невозможна.ответ: 41 Детальніше - на -
Смотри вложение там решение твоего задания.