В решении.
Объяснение:
График функции - парабола со смещённым центром.
Таблица:
х -2 -1 0 1 2 3 4 5 6
у 15 8 3 0 -1 0 3 8 15
График прилагается.
1. Область определения функции. Ничем не ограничена.
D(y) = х∈(-∞; +∞).
2. Область значения функции E(y). Ограничена ординатой вершины параболы у = -1.
E(y) = у∈[-1; +∞).
3. Нули функции ( аргумент точек пересечения параболы с осью Ох).
х = 1; х = 3. Координаты точек (1; 0); (3; 0).
4. Знакопостоянство ( какая часть параболы находится выше оси Ох у>0, какая часть параболы находится ниже оси Ох у<0)
а) у>0 при х∈(-∞; 1)∪(3; +∞);
б) у<0 при х∈(1; 3).
5. Наибольшее (наименьшее) значение функции ( значение ординаты вершины параболы)
.
а) у наиб. не существует.
б) у наим. = -1.
6. Промежутки возрастания (убывания ) функции.
а) функция возрастает на промежутке х∈[2; +∞);
б) функция убывает на промежутке х∈(-∞; 2].
Первая труба наполнит бассейн за: T1 час;
2. Второй трубой бассейн наполнится за: T2 час;
3. Скорость наполнения первой трубы: P1 = 1/T1 (1/час);
4. Скорость наполнения второй трубы: P2 = 1/T2 (1/час);
5. Составляем два уравнения по условиям задачи:
0,1 * (1 / P1) + 0,9 * (1 / P2) = 4;
0,9 * (1 / P1) + 0,1 * (1 / P2) = 28/3;
6. Заменяем переменные:
0,1 * T1 + 0,9 * T2 = 4;
0,9 * T1 + 0,1 * T2 = 28/3;
T2 = (4 - 0,1 * T1) / 0,9;
0,9 * T1 + 0,1 * (4 - 0,1 * T1) / 0,9 = 28/3
8,1 * T1 + 4 - 0,1 T1 = 84;
8 * T1 = 80;
T1 = 80 / 8 = 10 часов.
ответ: первая труба наполнит бассейн за 10 часов