Основная теорема алгебры. Уравнение n-го степеня имеет n корней. Иными словами: каков старший степень - столько и корней (действительные и комплексные)
Решим к примеру уравнение в действительных корнях.
Рассмотрим функцию . Эта функция является возрастающей на всей числовой прямой.
Также рассмотрим правую часть уравнения: функцию . Графиком линейной функции является прямой, проходящей через точки (0;6), (-6;0).
графики пересекаются в одной точке, следовательно, уравнение имеет один действительный корень и 6 комплексно-сопряженные корни.
Возьмем теперь к примеру уравнение
Если D>0, то квадратное уравнение имеет два ДЕЙСТВИТЕЛЬНЫХ корня.
Если D=0, то квадратное уравнение имеет два равные корни.
Если D<0, то квадратное уравнение действительных корня не имеет, но имеет два комплексно сопряженных корня.
Объяснение:
А(2;3) и В(5;6) ∈ АВ
Пусть С(0;0) и D(5;0) ∈ CD (оси ОХ).
Найдём координаты векторов АВ и СD:
Вектор АВ: (5-2;6-3)=(3;3).
Вектор СD: (5-0;0-0)=(5;0).
Найдём модули векторов:
ответ: φ=45°.