Объяснение:
«Теплоход проходит расстояние между двумя пристанями по течению реки за 3 ч., а против течения — за 3,8 ч. Собственная скорость теплохода — a км/ч, а скорость течения реки — m км/ч».
a) (а+m) - скорость теплохода по течению реки
(а-m) - против течения реки.
b) 3(а+m) - расстояние, которое теплоход проплыл по течению реки.
с) 3,8(а-m) - расстояние, которое теплоход проплыл против течения реки.
d) Сравни расстояние, пройденное теплоходом по течению реки и против течения реки.
3,8(а-m)/3(а+m)=1
3,8(а-m)=3(а+m) 0,8а= 6,8m
а=8,5m связь между скоростью лодки итечения.
x/2 = (-1)^n arcSin(-1/2) + nπ, n ∈Z
x/2 = (-1)^(n+1) *π/6 + nπ, n ∈Z
x = (-1)^(n+1)*π/3 + 2nπ, n ∈Z
б) 2XosxCos4x - Cosx = 0
Cosx(2Cos4x -1) = 0
Cosx = 0 или 2Cos4x -1=0
x = π/2 + πk , k ∈Z Cos4x = 1/2
4x = +-arcCos1/2 + 2πn, n ∈Z
4x = +- π/3 + 2πn, n ∈Z
x = +-π/12 + πn/2 , n ∈Z
в) Sinx +√3Cosx = 0
Sinx = -√3Cos x |²
Sin²x = 3Cosx
1 - Cos²x = 3Cosx
Cos²x +3 Cosx -1 = 0
решаем как квадратное
D = 13
Cosx = (-3+√13)/2 нет решений.
Сosx = (-3 -√13)/2 нет решений