3x+y=5 - мы получили верхнее уравнение, значит у нас в системе два одинаковых уравнения с двумя неизвестными решением которых будут точки прямой вида y=5-3x.
2) {4х+5у=9
{12х+15у=18
12х+15у=18 | ;3
4x+5y = 6
Упс! кажется решений нет, но не тут то было
заменим 4x+5y = a
получаем систему:
{а=9
{а=6
или
{a=7.5+1.5
{a=7.5-1.5
введем дополнительный параметр b, такой что
b*|b|/2=1.5
b=±√3
то есть получаем, что a=7.5 + (b*|b|) :2, где b=±√3
На координатной плоскости возьмем точки А(1;0), В(0;1) и С((х√3)/2; x/2). Тогда BC=√(3x²/4+(1-x/2)²)=√(x²-x+1), AC=√((х√3)/2-1)²+x²/4)=√(x²-х√3+1), AB=√2. Т.к. по неравенству треугольника BC+AC≥AB, то √(x²-x+1)+√(x²-х√3+1)≥√2. Равенство здесь достигается при C∈AB, а именно, при х=√3-1. Действительно: √((√3-1)²-(√3-1)+1)=√(6-3√3)=√3·√(2-√3)=√3·√((√3-1)²/2)=(3-√3)/√2. √((√3-1)²-√3(√3-1)+1)=√(2-√3)=√((√3-1)²/2)=(√3-1)/√2. Сумма этих выражений равна √2. Таким образом, после умножения на √2, получим, что минимальное значение равно 2.
P.S. x=√3-1 найдено из соображений, что точка С((х√3)/2; x/2) должна лежать на прямой AB, задаваемой уравнением u+v=1. Т.е. должно выполняться (х√3)/2+x/2=1, откуда x=√3-1.
1) {3х+у=5
{12х+4у=20
12х+4у=20 | :4
3x+y=5 - мы получили верхнее уравнение, значит у нас в системе два одинаковых уравнения с двумя неизвестными решением которых будут точки прямой вида y=5-3x.
2) {4х+5у=9
{12х+15у=18
12х+15у=18 | ;3
4x+5y = 6
Упс! кажется решений нет, но не тут то было
заменим 4x+5y = a
получаем систему:
{а=9
{а=6
или
{a=7.5+1.5
{a=7.5-1.5
введем дополнительный параметр b, такой что
b*|b|/2=1.5
b=±√3
то есть получаем, что a=7.5 + (b*|b|) :2, где b=±√3
или
4x+5y=7.5 + (b*|b|) :2
то есть решением будет
y=(1.5 + (b*|b|) :10 - 0.8x) , где b=±√3