Объяснение:
1) пусть
f(x)=2^((x-4)/3)-2^((7-x)/3)-1
найдем какой-нибудь нуль функции
2^((x-4)/3)-2^((7-x)/3)-1=0
2^((x-4)/3)-2^((7-x)/3)=1
найдем целое решение
2^a-2^b=1 рассмотрим случай когда 2^a=2 и 2^b=1
(x-4)/3=1 х-4=3 х=7
(7-x)/3=0 7-х=0 х=7
⇒ х=7 - нуль функции
2) f'(x)=(1/3)(2^((x-4)/3)ln2+(1/3)(2^((7-x)/3)ln2=(1/3)ln2[)(2^((x-4)/3)+(2^((7-x)/3)]
так как ln2>0; 2^((x-4)/3)>0 ; 2^((7-x)/3)>0 ⇒ f'(x)>0 на всей области определения ⇒ функция возрастающая на всей области определения ⇒ х=7 - нуль функции - единственный нуль функции
решим неравенство методом интервалов
при х<7 например х=4
2⁰-2¹-1=1-2-1=-2<0
при х>7 например х=10
2²-2⁻¹-1=4-(1/2)-1>0
y - +
(-∞)[7](+ω)
⇒ 2^((x-4)/3)-2^((7-x)/3)-1>0 при х>7
x∈(7;+∞)
x*3x+2x-3*3x-6=5x*3x-5x*2-4*3x+8
3x^2+2x-9x-6=15x^2-10x-12x+8
3x^2-15x^2-7x-6=-22x+8
-12x^2+15x+14=0
12x^2-15x-14=0
2)(2x+7)(7-2x)=49+x·(x+2)
7*2x-2x*2x+7*7-7*2x=49+x^2+2*x
14x-4x^2+49-14x=49+x^2+2x
-4x^2+49-49=x^2+2x
x^2+2x=-4x^2
x^2+4x^2+2x=0
5x^2+2x=0, где с=0
3)3x-2\2x+1=2x+3\2x-1
(2x-1)(3x-2)-(2x+1)(2x+3)=0
2x*3x-2x*2-1*3x+2-2x*2x-3*2x+2x+3=0
6x^2-4x-3x+2-4x^2-6x+2x+3=0
6x^2-4x^2-7x-6x+2x+2+3=0
2x^2-11x+5=0
4)x-1\x+3+5x-4\4x+1=1
(4x+1)(x-1)+(x+3)(5x-4)=(x+3)(4x+1)
4x*x-4x+x-1+5x*x-4x+3*5x-3*4=x*4x+x+3*4x+3
4x^2-3x-1+5x^2-4x+15x-12=4x^2+x+12x+3
x^2: 4x^2+5x^2-4x^2
x:-3x-4x+15x-12x-x
x^0:-1-12-3
5x^2-5x-16=0