Найти первый положительный член арифметической прогрессии -10,2; -8,3; ...
Арифметическая прогрессия - это последовательность чисел, каждый член которой, начиная со второго, равен предыдущему, увеличенному на одно и тоже число (разность арифметической прогрессии, обозначается d).
По условию а₁ = -10,2, a₂ = -8,3, тогда d = a₂ - a₁ = -8,3 - (-10,2) = -8,3 + 10,2 = 10,2 - 8,3 = 1,9.
an = a₁ + d(n - 1) - формула n-го члена
По условию аn > 0, поэтому решим получившееся неравенство
-10,2 + 1,9(n - 1) > 0,
-10,2 + 1,9n - 1,9 > 0,
1,9n - 12,1 > 0,
1,9n > 12,1,
19n > 121,
n > 121/19 = 6 целых 7/19.
Значит, n = 7.
Найдем а₇:
а₇ = -10,2 + 1,9(7 - 1) = -10,2 + 1,9 · 6 = -10,2 + 11,4 = 11,4 - 10,2 = 1,2.
ответ: 1,2.
находится из выражения: х₁,₂ = (-в+-√(в²-4ас)) / 2а.
В задании дано: а=3 в = 5 с = 2m x₁ = -1.
Подставляем эти данные в уравнение:
-1 = (-5+-√(5²-4*3*2m)) / 2*3
-6 = -5+-√(25-25m)
-1 = +-√(25-25m) Возведем обе части в квадрат:
1 =25 - 24m 24m = 24 m = 1
Отсюда х = (-5+-√(5²-4*3*2*1)) / 2*3 = (-5 +- 1) / 6
х₁ =(-5+1) / 6 = -4 /6 = -2 / 3 (это второй корень)
х₂ = (-5-1) / 6 = -6 / 6 = -1 (этот корень дан в задании)