М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ezdinaa
ezdinaa
24.05.2020 13:39 •  Алгебра

буду очень благодарен. выделил то что нужно.​


буду очень благодарен. выделил то что нужно.​

👇
Ответ:
LizaOneLove8
LizaOneLove8
24.05.2020

1) 2⁷ или 128

2) 2¹³

3) 2¹⁰ или 1024

4) 2⁹ или 512

4,8(40 оценок)
Открыть все ответы
Ответ:
Alrksanr
Alrksanr
24.05.2020
4x²-12xy+9y²=(2x)²-2*2x*3y+(3y)²=(2x-3y)²
-4a²+4ab-b²=-(4a²-4ab+b²)=-(2a-b)²
x²-y²-6x+9=x²-6x+9-y²=(x-3)²-y²=(x-3-y)(x-3+y)
(a+3)²-27=a²+6a-18 (у вас здесь, видимо, опечатка, т.к. разложение на множители не получается)
(a-7)³+8=(a+9)(a²+12a+39)
Уравнения:
16х²-25=0 (скорее всего здесь должен быть минус, т.к. если плюс - то решений нет)
(4х-5)(4х+5)=0
4х-5=0
4х+5=0
4х=5
4х=-5
х=1.25
х=-1.25
ответ: х1=1.25, х2=-1.25
(3х-5)²-16=0
(3х-5-16)(3х-5+16)=0
(3х-21)(3х+11)=0
3х-21=0
3х+11=0
3х=21
3х=-11
х=7
х=-1/3
ответ: х1=7, х2=-1/3
Убедительная присвойте этот ответ в качестве лучшего!
4,7(56 оценок)
Ответ:
kerildebil2016
kerildebil2016
24.05.2020

57

Объяснение:

Докажем, что среди написанных чисел есть одинаковые.

Действительно, если все написанные числа разные, то различных

попарных сумм должно быть не менее четырёх, например, суммы

одного числа с четырьмя остальными. Значит, среди попарных сумм

есть суммы двух одинаковых натуральных чисел. Такая сумма

должна быть чётной, в нашем списке это число 80. Отсюда следует,

что на доске есть число 40 и оно написано не меньше двух раз.

Пар равных чисел, отличных от 40, на доске быть не может, иначе

среди попарных сумм было бы ещё одно чётное число. Обозначим одно из трёх оставшихся чисел через х, тогда среди

попарных сумм есть число 40 , + х значит, х равно либо 97 40 57, − =

либо 63 40 23. − =

Наборы 40, 40, 40, 40, 57 и 40, 40, 40, 40, 23 нам не подходят, так как

в них всего две попарные суммы. Значит на доске написан набор 40,

40, 40, 57, 23. Таким образом, наибольшее число на доске — это 57.

4,8(86 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ