М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Отрак
Отрак
10.01.2021 19:13 •  Алгебра

Докажите что корень из 11 является иррациональным числом

👇
Ответ:
liza0234
liza0234
10.01.2021

Предположим противоположное, что \sqrt{11} - является рациональным числом, тогда его можно записать в виде несократимой дроби \frac{P}{Q} , где P,Q - некоторые целые числа

 

\frac{P}{Q}=\sqrt{11};\\\\\frac{P^2}{Q^2}=11;\\\\P^2=11Q^2;

так как P, Q, 11 - целые, то Р делится на 11, а значит его можно записать в виде

P=11k, где k - некоторое действительное число

(11k)^2=11Q^2;\\\\121k^2=11Q^2;\\\\Q^2=11k^2

так как P, Q, 11 - целые, то Q делится на 11, что невозможно у P и Q нет общих делителей кроме 1 или -1. Пришли к противоречию.

Значит корень из 11 не является рациональным числом, т.е. корень из 11 является иррациональным числом. Доказано

4,6(84 оценок)
Открыть все ответы
Ответ:
ричбич4
ричбич4
10.01.2021
Решение
1)  2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2)  sin2x - √2/2 < 0
 sin2x < √2/2 
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/8 + πk < x < π/8 + πk, k ∈ Z
3)  tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
4,5(9 оценок)
Ответ:
vadimash
vadimash
10.01.2021
Решение
1)  2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2)  sin2x - √2/2 < 0
 sin2x < √2/2 
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/8 + πk < x < π/8 + πk, k ∈ Z
3)  tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
4,4(52 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ