Вот ааааааааааааааааа
1) x ∈ (-∞; -8) U (3; +∞)
2) x ∈ (-∞; -3) U (5; 7)
Объяснение:
1) x^2 + 5x - 24>0
x^2 + 5x - 24=0
D= √(b^2 - 4ac) = √(5^2 - 4 * 1 * (-24)) = √(25 + 96) = √121 = 11
x = (-b +/- √D)/2a
x1 = -5 + 11 / 2 =3
x2 = -5-11 /2 = -8
Получается три интервала:
x<-8
-8<x<3
x>3
чередуем знаки справа налево, первый - плюс (так как нам нужно больше, то выбираем там, где плюс)
получаем x<-8 и x>3
2) (x-5)(x-7)(x+3)<0
(x-5)(x-7)(x+3)=0
x = 0 тогда, когда один из множителей равен нулю:
x=5; x=7; x=-3
получаем четыре интервала (см фотку)
выбераем там, где минус, т. к. нужен знак < по условию
x<-3 и 5<x<7
Объяснение:
Функция задана формулой y = -2x + 7.
Определите:
1) значение функции, если значение аргумента равно 6;
Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=6
у= -2*6+7= -5 при х=6 у= -5
2) значение аргумента, при котором значение функции равно -9;
Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
-9= -2х+7
2х=7+9
2х=16
х=8 у= -9 при х=8
3) проходит ли график функции через точку А(-4;15).
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
15= -2*(-4)+7
15=15, проходит.
Решение на фотографии