Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби {\displaystyle \pm {\frac {m}{n}}}{\displaystyle \pm {\frac {m}{n}}}, где {\displaystyle m,n}m,n — натуральные числа. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.
Иррациональные числа
ζ(3) — ρ — √2 — √3 — √5 — ln 2 — φ,Φ — ψ — α,δ — e — {\displaystyle e^{\pi }}e^{\pi } и π
Другими словами, множество иррациональных чисел есть разность {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} }{\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } множеств вещественных и рациональных чисел.
О существовании иррациональных чисел (точнее отрезков, несоизмеримых с отрезком единичной длины), знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа {\displaystyle {\sqrt {2}}}{\sqrt {2}}[1].
К числу иррациональных чисел относятся отношение π окружности круга к его диаметру, число Эйлера e, золотое сечение φ и квадратный корень из двух[2][3][4]; на самом деле все квадратные корни натуральных чисел, кроме полных квадратов, иррациональны.
Иррациональные числа также могут рассматриваться через бесконечные непрерывные дроби. Следствием доказательства Кантора является то, что действительные числа неисчислимы, а рациональные счетны, отсюда следует, что почти все действительные числа иррациональны[5].
Объяснение:
в первом можно извлечь кубический корень с двух частей уравнения и получить квадратное уравнение x^2=6x-5 где x=5 x=1 (с арифметикой могу наложать сори )
а во втором сначала в функцию p(a)посдставляем a выходит a(6-a)/a-3
потом вместо а подставляем 6-a выходит (a-6)(6-(6-a)/(6-a)-3
упрощаем второе выражение (a-6)(a)/3-a ->a^2-6a/3-a
а теперь делим первое на второе
a(6-a)/a-3:a^2-6a/3-a получается сверху a(6-a)*(a-3) а снизу
(a-3)a(a-6)
сокращаем получаем -1 так как поменяли местами a-6
x=-9
Объяснение:
Вичеслить :2× 3+x+3=0
Вичеслить :6+x+3=0
Перенести константу в правую часть равенства :9+x=0
Решение :X=-9