Арифм, прогрессия. Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3
т.е. число можно представить в виде аn=4n+3. Найдем последний двузначный член прогрессии, т.к. наименьшее трехзначное число равно 100, получим
4n+3<100
4n<97
n<24,25
Т.к. n – целое натуральное число, следовательно, согласно неравенству n<24,25, последний двузначный член имеет номер 24, найдем номер первого двузначного числа
4n+3≥10
4n≥7
n≥1,75
номер первого двузначного числа, , согласно неравенству n≥1,75, первый двузначный член имеет номер 2, найдем необходимые члены прогрессии
а₂=4*2+3=11
а₂₄=4*24+3=99
Сумма n последовательных членов арифметической прогрессии начиная с члена :
Sn=(а₁+аn)*n/2
т.к. надо найти сумму со 2 по 24 член, рассмотрим их как последовательность с 1 по 23 члены, получим
S₂₃=(11+99)*23/2=1265
Удачи!
Сначала всё обозначим:
ширина бассейна по условию х;
длина бассейна х+6;
ширина прямоугольника,в котором находится бассейн, х + 1 (добавилось по 0,5 м с каждой стороны за счёт дорожки);
длина этого же прямоугольника х + 7 (также добавилось по 0,5 м с двух сторон за счёт дорожки).
Дальше из площади большого прямоугольника вычитаем площадь малого(бассейн) и получаем разницу 15 кв.метров - площадь всей дорожки по условию:
(x+7) *(x+1) - (x+6) * x = 15
x^2 + x + 7x - x^2 - 6x = 15 2x=8 x=4(ширина бас.); 4+6=10 (длина бас.).
х= ³/₂₆
Объяснение:
( -6х + 1) : 4 = 2х : 3
Умножим обе части уравнения на 12
3 ( -6х + 1) =4* 2х
-18х+3 =8х
3 = 18х+8х
3= 26 х
х= 3/26
Проверка
( -6*3/26 + 1) : 4 = 2*3/26 : 3
(-18/26+1) : 4 = 2/26
8/26 : 4 = 2/26
2/26 = 2/26
1/13 = 1/13