Если (х,у) - какое-то решение системы, то т.к. х встречается только в квадрате, то (-х, у) - тоже решение, Значит количество решений системы всегда четное, за исключением случая, когда есть решение с х=0. В этом случае y=A, и A=√3 или A=-√3. 1) Если A=√3, то y=x²+√3, (x²+√3)²+x²=3 x⁴+(2√3+1)x²=0 x²(x²+2√3+1)=0 x=0; x²+2√3+1=0 действительных корней не имеет. Итак, в этом случае 1 решение.
2) Если A=-√3, то y=x²-√3, (x²-√3)²+x²=3 x⁴+(-2√3+1)x²=0 x²(x²-2√3+1)=0 x=0; x²=2√3-1>0 - дает еще два решения. Итак, в этом случае 3 решения.
Все это можно понять и из графиков. Первое уравнение задает окружность радиусом √3, а второе - параболу y=x² сдвинутую на А по оси Оу. В силу симметрии графиков относительно оси Оу, понятно что всегда будет четное количество решений (либо не будет вообще). 1 решение или 3 возможны только в случае, когда вершина параболы y=x²+A совпадает с верхней или нижней точкой окружности, т.е. при A=√3 или А=-√3. В первом случае, очевидно одно решение. А во втором не так очевидно, что 3 решения, но это проверяется, как я сделал выше.
1) ac2-ad+c3-cd-bc2+bd= = (ac2 – ad) + (c3 –
bc2) + (bd – cd) = a·(c2 – d) + c2·(c – b) + d·(b – c) = a·(c2 – d) +
c2·(c – b) – d·(c – b) = a·(c2 – d) + c2·(c – b) – d·(c – b) = a·(c2 –
d) + (c – b)·(c2 – d) = (c2 – d)·(a + c – b)
2) mx2+my2-nx2-ny2+n-m= x2 ( m - n ) + y2 ( m - n ) - ( m - n ) = ( m-n ) (x2 + y2 - 1 )
3) am2+cm2-an+an2-cn+cn2= m2 (a + c ) + n2 ( a + c ) - n ( a + c ) = ( a+ c) ( m2 + n2 - n)
4) xy2-ny2-mx+mn+m2x-m2n= y2 ( x - n ) + m2 ( x - n) - m ( x - n ) = ( x-n) ( y2 + m2 - m )
5) a2b+a+ab2+b+2ab+2=ab ( a + b + 2 ) + ( a+ b+ 2 ) = 2 ( a+ b + 2 )
6) x2-xy+x-xy2+y3-y2= x ( x – y + 1) – y 2 ( x – y + 1)=( x – y + 1)( x – y 2 ).