М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
katarina10991
katarina10991
15.10.2021 09:09 •  Алгебра

Сравните числа a i b, если a-b=√11

👇
Открыть все ответы
Ответ:
govnonavynos
govnonavynos
15.10.2021
A =9x =4y +2 ; 
Число  a должна  иметь  вид : a =36k +18 .  

Т.к. число a трехзначное, то 100<36k+18 <1000 ⇔3 ≤ k  ≤ 27.
Количество таких чисел:  n=27-(3-1) = 25 . 
a∈{ 126 ; 162 , 198 ; ...972} * * * Составляют арифметическую прогрессию * * *
* !  702 = 126 +(n-1)36⇒n=17  * * * 
702 =36k+18 при k =19.

* * *   P.S.  * * *
a = 9x = 4y +2 ;  || 100 <9x <1000⇔12 <x ≤111 || 
y =(9x -2)/4 ;
y = 2x + (x-2)/4  ; k= (x-2)/4⇒x=4k+2 .  || y =2x+k =2(4k+2)+k =9k+4 ||
⇒ { x =4k +2 . y =9k+4 .
||  12 ≤ 4k+2 ≤ 111⇔2,5  ≤ k ≤27,25 ; 3 ≤ k ≤ 27 ||
a =9x =36k+18.
 
 
число  a =9x =9(4k +2) =36k +18.
4,7(89 оценок)
Ответ:
ТаяDuda2133
ТаяDuda2133
15.10.2021
\frac{log_{21+4x-x^2}(7-x)}{log_{x+3}(21+4x-x^2)} \ \textless \ \frac{1}{4}
ОДЗ: 21 + 4x - x² > 0
          21 + 4x - x² ≠ 1
          7 - x > 0
          x + 3 > 0
          x + 3 ≠ 1

21 + 4x - x² > 0
x² - 4x - 21 < 0

x² - 4x - 21 = 0
По теореме Виета: x₁ = -3, x₂ = 7.

x² - 4x - 21 < 0
x ∈ (-3; 7)

21 + 4x - x² ≠ 1
x² - 4x - 20 ≠ 0
D = 16 + 80 = 96
x_1 \neq \frac{4- \sqrt{96}}{2} = 2 -\sqrt{24} = 2(1-\sqrt{6}) \\ x_2 \neq \frac{4+\sqrt{96}}{2} = 2+\sqrt{24}=2(1+\sqrt{6})

7 - x > 0
x < 7

x + 3 > 0
x > -3

x + 3 ≠ 1
x ≠ -2

Окончательно, ОДЗ: x ∈ (-3; 2(1-\sqrt{6})) U (2(1-\sqrt{6}); -2) U (-2; 2(1+\sqrt{6})) U (2(1+\sqrt{6}); 7).

Решаем само неравенство:
\frac{log_{-(x+3)(x-7)}(7-x)}{log_{x+3}(-(x+3)(x-7))} \ \textless \ \frac{1}{4} \\ \frac{log_{(x+3)(7-x)}(7-x)}{log_{x+3}((x+3)(7-x))} \ \textless \ \frac{1}{4}
\frac{1}{log_{7-x}((x+3)(7-x))*log_{x+3}((x+3)(7-x))} \ \textless \ \frac{1}{4} \\ \frac{1}{(log_{7-x}(x+3)+1)*(1+ log_{x+3}(7-x))} \ \textless \ \frac{1}{4}
\frac{1}{( \frac{1}{ log_{x+3}(7-x)}+1)*(1+ log_{x+3}(7-x))} \ \textless \ \frac{1}{4} \\ \frac{log_{x+3}(7-x)}{(1+ log_{x+3}(7-x))^2} \ \textless \ \frac{1}{4}
Замена:
t=log_{x+3}(7-x) \\ \frac{t}{(1+t)^2} \ \textless \ \frac{1}{4} \\ \frac{4t-(1+t)^2}{4(1+t)^2} \ \textless \ 0
\frac{4t-1-2t-t^2}{4(1+t)^2} \ \textless \ 0 \\ \frac{-(1-t)^2}{4(1+t)^2} \ \textless \ 0
\frac{(1-t)^2}{4(1+t)^2}\ \textgreater \ 0
t ≠ 1
t ≠ -1
Делаем обратную замену:
log_{x+3}(7-x) \neq 1 \\ log_{x+3}(7-x) \neq -1

7-x \neq x+3\\ 7-x \neq \frac{1}{x+3}

2x \neq 4\\ \frac{(7-x)(x+3)-1}{x+3} \neq 0

x \neq 2\\ \frac{20+4x-x^2}{x+3} \neq 0

x \neq 2\\ x^2-4x-20 \neq 0 \\ x+3 \neq 0

x \neq 2\\ x^2-4x-20 \neq 0 \\ x\neq -3

Учитывая ОДЗ, окончательный ответ: x ∈ (-3; 2(1-\sqrt{6})) U (2(1-\sqrt{6}); -2) U (-2; 2) U (2; 2(1+\sqrt{6})) U (2(1+\sqrt{6}); 7).

 
4,4(6 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ