См в объяснение, это полезно
Объяснение:
Ну давай начнем с того, что вообще такое область определения.
Область определения - область значений x (или любой другой независимой переменной), при котором функция имеет смысл, то есть имеет значение y
Функция не имеет значения (и значений тоже), когда, например, присутствует деление на 0, а так же, когда подкоренное выражение отрицательно (но последнее - только в рамках действительных чисел, но сейчас мы рассматриваем задачу в этих рамках, иначе это было-бы указано). Это мы сейчас и будем использовать.
11. Давай сразу посмотрим на знаменатели, остальное сейчас не имеет значения
не должен быть равен 0. Мы можем повлиять только на х, что и будем делать.
Сначала предположим, в каком случае знаменатель будет равен 0
Квадратный корень равен нулю, когда подкоренное выражение равно нулю, тогда
когда
, => (следовательно)
, а такого не бывает. Этот параметр не задает никаких условий к области определения.
Тогда, посмотрим на другое условие - подкоренное выражение не должно быть отрицательным, значит должен быть больше или равен нулю, значит,
, следовательно,
=>
=>
=>
и
(это - исключительно совокупность)
Значит, из этого знаменателя мы можем вынести, что и
(если-бы было еще что-то, то данное условие вошло бы с ним в еще одну совокупность)
Посмотрим тогда на знаменатель другой дроби
Здесь все проще - x-1
Тут нет квадратного корня, поэтому - единственное, на что можно обратить внимание - это то, что знаменатель дроби не должен быть равен нулю.
Предположим, что знаменатель равен нулю, тогда x-1=0 => x=1
Так как при этом значении х функция утрачивает смысл, то это значение надо исключить из области определения =>
Итак, мы имеем два условия, при соблюдении которых функция будет иметь смысл- и
и
(последнее- совокупность). При этом, если соблюсти только одно из условий - функция все равно не будет иметь значений. Значит, это тоже будет совокупностью.
Если надо, можно записать в таком виде - (нижнюю строку надо тоже сделать совокупностью, я не могу это сделать на компьютере)
Или так - x ∈ [-2;0)∩(0;2]
В целом, действовать можно по такой схеме - находим знаменатели дробей, смотрим, есть ли в них переменная, если есть - то находим область значений этой переменной, при которых значение знаменателя не будет равно нулю (на промежуточном этапе можно в виде n). Потом - ищем корни, и находим область определения, при котором подкорное выражение неотрицательное. Потом - объединяем полученные условия в совокупность - и готово
2) 100-(3a+7y)^2=(10-(3a+7y))•(10+(3a+7y))=(10-3a-7y)•(10+3a+7y)
3) 9x^2y^4-(a-b)^2=(3xy^2-(a-b))•(3xy^2+(a-b))=(3xy^2-a+b)•(3xy^2+a-b)
2. 1) (m-2n)^2-(2p-3q)^2=((m-2n)-(2p-3q))•((m-2n)+(2p-3q))=(m-2n-2p+3q)•(m-2n+2p-3q)
2) 16(a+b)^2-9(x+y)^2=16 (a^2+2ab+b^2)-q•(x^2+3xy+y^2)=16a^2+32ab+16b^2-qx^2-2qxy-ay^2
3) (2a-3c)^2-(4b+5d)^2=((2a-3c)-(4b+5a))•((2a-3c)+(4b+5d))=(2a-3c-4b-5d)•(2a-3c+4b+5d)
4) 9(a-b)^2-4(x-y)^2=(3 (a-b)-2 (x-y))•(3 (a-b)+2 (x-y))=(3a-3b-2x+2y)•(3a-3b+2x-2y)
3. 1) a^8-b^8=(a^4-b^4)•a^4+b^4)=(a^2-b^2)•(a^2+b^2)•(a^4+b^4)=(a-b)•(a+b•(a^2+b^2)•(a^4+b^4)
2) a^6-b^6=(a^3-b^3)•(a^3+b^3)=(a-b)•a^2+ab+b^2)•(a+b)•(a^2-ab+b^2)
3) (a+b)^4-(a-b)^4=((a+b)^2-(a-b)^2)•((a+b)^2+(a-b)^2)=(a^2+2ab+b^2-(a^2-2ab+b^2))•(a^2+2ab+b^2+a^2-2ab+b^2)=(a^2+2ab+b^2-a^2+2ab-b^2)•(2a^2+2b^2)=4ab×2 (a^2+b^2)=8ab•(a^2+b^2)
4. ax^2+bx^2-bx-ax+cx^2-cx=x•(ax+bx-b-a+cx-c)