Уравнение любой касательной к любому графику находится по формуле: Где производная функции в данной точке. А точка касания по иксу.
1) Поначалу у функции мы должны найти производную общего типа этой функции. Это степенная функция, а производная любой степенной функции находится следующей формулой: - где n это степень. В нашем случае: Так, нашли производную общего случая.
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
2) Опять же, найдем производную Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
То есть, берешь любой икс, и вставляешь в выражение касательной вместо и получаешь уравнение касательной.
Это и есть окончательные ответы. Если что-то не правильно, то это значит что вы не правильно написали условие.
Так как a, b, c - последовательные члены арифметической прогрессии, то b и с можно выразить через а и разность прогрессии d: Характеристическое свойство арифметической прогрессии: каждый член арифметической прогрессии, начиная со второго, равен полусумме предыдущего и последующего члена. Значит, нужно доказать, что: Выполняем преобразования: Выражаем b и с через а и d: Слева и справа записаны одинаковые выражения. Значит, заданные числа удовлетворяют характеристическому свойству и являются последовательными членами арифметической прогрессии
F(x,y)=3x^2+4xy+3y^2−2x+2y+10
2x^2+4xy+2y^2 + x^2−2x + 1 + y^2+2y+1 + 8 = 2(x + y)^2 + (x - 1)^2 + (y + 1)^2 + 8
Минимум когда квадраты = 0 x = 1 y = -1
Минимум 8