a : b = 1 : 5 - отношение двух чисел
Пусть х - коэффициент пропорциональности, тогда а = 1х, b = 5х
1) a - b = 0,72 - разность этих чисел
1х - 5х = 0,72
- 4х = 0,72
х = 0,72 : (-4)
х = - 0,18 - число а
5х = 5 · (-0,18) = - 0,9 - число b
ответ: меньшее число равно (-0,9); большее число равно (-0,18).
Проверка: -0,18 - (-0,9) = -0,18 + 0,9 = 0,9 - 0,18 = 0,72 - разность.
2) b - a = 0,72 - разность этих чисел
5х - х = 0,72
4х = 0,72
х = 0,72 : 4
х = 0,18 - число а
5х = 5 · 0,18 = 0,9 - число b
ответ: меньшее число равно 0,18; большее число равно 0,9.
Проверка: 0,9 - 0,18 = 0,72 - разность.
Подробнее - на -
Объяснение:
(a₂+1) / (a₁+1) = (a₃+13) / (a₂+1) {Запись говорит о том что это геометрическая прогрессия q=q}
Дальше каждый член арифметической прогрессии расписываем:
a₂=a₁+d
a₃=a₁+2d
a₁+a₁+d+a₁+2d=24
3a₁+3d=24
3(a₁+d)=24
a₁+d=8 {Получили из первого уравнения}
(a₁+d+1) / (a₁+1) = (a₁+2d+13) / (a₁+d+1) {Получили из второго уравнения}
Решаем систему уравнений:
a₁=8-d
(8-d+d+1) / (8-d+1) = (8-d+2d+13) / (8-d+d+1)
9 / (9-d) =(21+d) / 9
(21+d)(9-d)=81
189+9d-21d-d²=81
-d²-12d+108=0
ответ: d₁ = -18; d₂ = 6
По условию арифметическая прогрессия возрастающая, следовательно d=6
Проверка:
Для арифметической:
a₁=2
a₂=8
a₃=14
∑=24
Для геометрической:
a₁=3
a₂=9
a₃=27
q=3