) Найдите наибольшее значение функции y=x^3-12x+24 на отрезке [-4;0] y'=3x^2-12 y'=0 x=2 x=-2 y''=6x y(2)- минимум y(-2) max y(0)=24 y(-2)=-8+24+24=40 y(-4)=-64+24+48=8 ответ y(-2)=40 2) Найдите наибольшее значение функции y=(4x^2+49)/x на отрезке [-4;-1] y'=4-49/x^2 y'=0 4x^2=49 x^2=49/4 x1=7/2 x2=-7/2 y(-1)=-4-49=-53 y(-3,5)=-14-14=-28 ответ -28 3) Найдите наибольшее значение функции y=(4x-3)^2*(x+6)-9 на отрезке [-6;3] y'=8(x+6)(4x-3)+(4x-3)^2=32x^2-144+168x+16x^2+9-24x=48x^2+144x+135>0 y(3)=81*9-9=720
4) Найдите наименьшее значение функции y=6cosx-7x+8 на отрезке [-п/2;0] y'=-6sinx-7 y(0)=6+8=14 наименьшее y(-pi/2)=0+8+7pi/2>14
Разложим оба числа на простые множители.
255=5*51=5*3*17
510 = 2*5*3*17
Для НОД (наибольший общий делитель) берем все множители, которые встречаются в обоих числах, наименьшее число раз.
НОД = 5*3*17 = 255
Действительно, наибольшее число, на которые делятся оба данные числа - это 255
Для НОК (наименьшее общее кратное) берем все разные множители, которые встречаются хотя бы в 1 числе, наибольшее число раз
НОК = 2*5*3*17 = 510
Действительно, наименьшее число, которое делится на оба эти числа, это 510